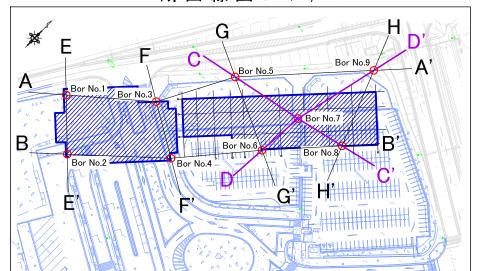


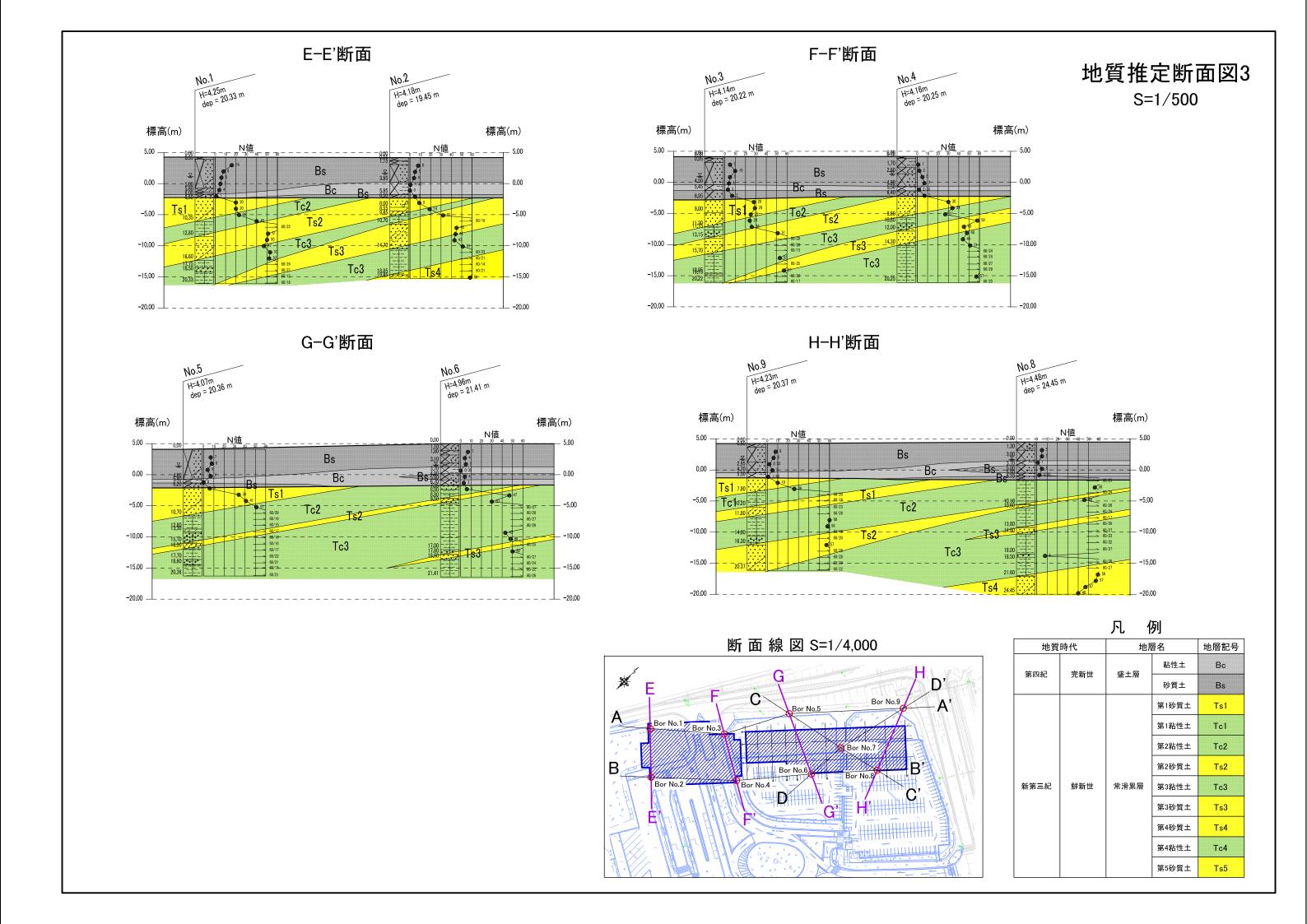
第5砂質土


Ts5

C-C'断面 No.5 No.8 No.7 H=4.48m dep = 24.45 m H=4.41m dep = 39.00 mH=4.07m dep = 20.36 m標高(m) 標高(m) 5.00 --- - - 0.00 ___ 5.00 Bs 0.00 -Ts1 -5.00 -5.00 Tc2 -Te3--10.00 -10.00 断面線図S=1/4,000 -15.00 -20.00 × Tc4 31.90 Ts5 36.60 B Bor No.2 D-D'断面 0.01 No.9 No.7 H=4.23m dep = 20.37 mH=4.96mdep = 21.41 m H=4.41mdep = 39.00 m 標高(m) 標高(m) N値 30 Bs ₿ē Tc1 -5.00 --5.00 Tc2 Tc3 -10.00 --10.00

-15.00

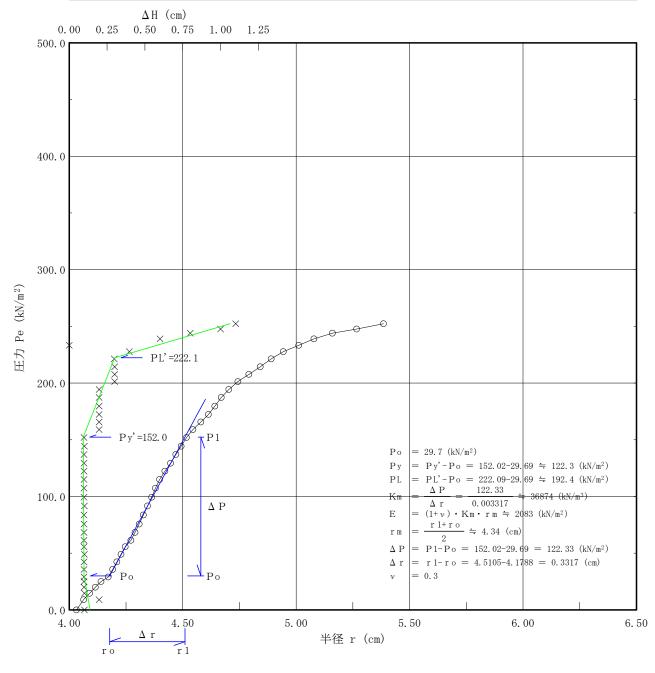
-20.00


地質推定断面図2 S=1/500

_ -15.00

凡 例

7 0 1/1					
地質	時代	地層	曾名	地層記号	
第四紀	完新世	盛土層	粘性土	Вс	
차면사	元利臣	二 上信	砂質土	Bs	
			第1砂質土	Ts1	
			第1粘性土	Tc1	
		常滑累層	第2粘性土	Tc2	
			第2砂質土	Ts2	
新第三紀	鮮新世		第3粘性土	Tc3	
			第3砂質土	Ts3	
		第4砂質土	Ts4		
			第4粘性土	Tc4	
			第5砂質土	Ts5	



孔内水平載荷試験

調査件名	知多市新庁舎等設計委託に伴う地盤調査				
測定番号	No. 7 - 1	深	度	GL -5.30 m	
測定月日	2023年 6月24日	時	間	9:00	
使用ゴム筒	生ゴムハイカー N 値 0/45				
地質名	盛土(シルト)				

試験装置	LLT
試験時の	
状況	

静止土圧 Po(kN/m²)	降伏圧 Py(kN/m²)	破壊圧 PL(kN/m²)	地盤係数 Km(kN/m³)	変形係数 E (kN/m²)	K値を求めた 中間半径 rm (cm)
29. 7	122.3	192. 4	36, 870	2, 083	4. 34

LLT測定データシート

調査件名	知多市新庁舎等設計委託に伴う地盤調査				
測定番号	1	深度	GL -5.30 m		
測定日	6月24日	時間	9:00		
使用ゴム筒	生ゴムハイカー	N 値	0/45		
地質	盛土(シルト)				

測定者	梶原良仁	自然水位	GL	-2.35 m
記録者	梶原茂樹	孔内水位	GL	-1.95 m
機器番号	LLT-1	タンク高さ	GL	+1.50 m

初期スタンドパイプの水位 Ho	0.30 cm
挿入後スタンドパイプの水位 Ho'	0.30 cm

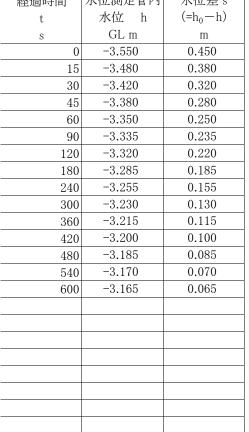
- [注記] 1) PGは使用ゴムに応じてあらかじめ定めたH-PG曲線より求める。
 - 2) Psは(PG-P)を求め、その最大値とする。 Ps = 0.0 (kN/m^2)
 - 3) Peは次式から求める。 Pe = P + Ps PG

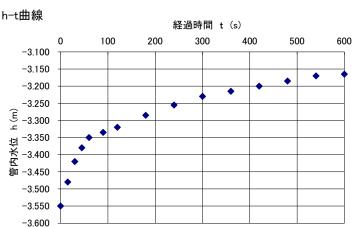
セル水圧	ガス圧	スタンドパイプ読みH'(cm)			(cm)
$P (kN/m^2)$	$P (kN/m^2)$	15	30	60	120
10.0	10.0	0.50	0.70	0.80	
20.0	20.0	1.00	1. 10	1.30	
30.0	30.0	1.50	1.60	1.70	
40.0	40.0	1. 90	2.00	2. 10	
50.0	50.0	2. 30	2.40	2.50	
60.0	60.0	2. 70	2.90	3.00	
70. 0	70.0	3. 10	3. 20	3.30	
80.0	80.0	3. 40	3.50	3.60	
90. 0	90.0	3. 70	3.80	3.90	
100.0	100.0	4.00	4. 10	4. 20	
110. 0	110.0	4. 40	4. 50	4.60	
120.0	120.0	4. 70	4.80	4. 90	
130. 0	130.0	5.00	5. 10	5. 20	
140.0	140.0	5. 30	5. 40	5. 50	
150. 0	150.0	5. 60	5. 70	5.80	
160. 0	160.0	5. 90	6.00	6. 10	
170. 0	170.0	6. 20	6.30	6. 40	
180. 0	180.0	6. 50	6.60	6.70	
190. 0	190.0	6. 90	7.00	7. 10	
200.0	200.0	7. 30	7.40	7. 50	
210.0	210.0	7. 70	7.80	7. 90	
220.0	220.0	8. 10	8. 20	8.30	
230. 0	230.0	8. 50	8.60	8.70	
240.0	240.0	8.90	9.00	9. 20	
250.0	250.0	9. 40	9.60	9.80	
260.0	260.0	10.00	10. 20	10.40	
270.0	270.0	10.50	10.70	10.90	
280. 0	280.0	11. 10	11. 20	11.40	
290.0	290.0	11.60	11.80	12.00	
300.0	300.0	12. 20	12.40	12.70	
310.0	310.0	13.00	13.30	13.60	
320.0	320.0	13. 90	14. 20	14. 50	
330.0	330.0	14. 80	15. 10	15. 40	
340.0	340.0	15. 70	16.00	16.40	
350.0	350.0	16. 70	17.70	17. 70	

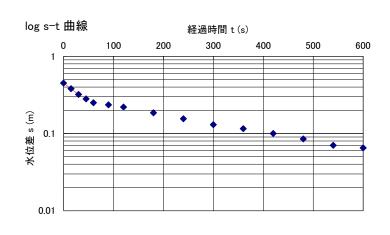
Δ H (cm)	H(cm)	PG	PG-P	Ре	r
H' ₆₀ -H' ₃₀	Н'60 -Но	(kN/m^2)	(kN/m^2)	(kN/m^2)	(cm)
0.10	0. 50	10.0	0.0	0.0	4. 033
0. 20	1.00	11. 1	-8.9	8. 9	4. 065
0.10	1. 40	15. 4	-14. 6	14.6	4. 091
0. 10	1.80	20.0	-20.0	20.0	4. 116
0.10	2. 20	25.0	-25.0	25.0	4. 142
0. 10	2. 70	31. 2	-28.8	28.8	4. 173
0.10	3. 00	34. 5	-35. 5	35. 5	4. 192
0.10	3. 30	37.8	-42.2	42. 2	4. 211
0.10	3. 60	41.1	-48.9	48.9	4. 229
0.10	3. 90	44. 6	-55.4	55. 4	4. 248
0.10	4. 30	49.0	-61.0	61.0	4. 272
0.10	4. 60	51.9	-68. 1	68. 1	4. 291
0.10	4. 90	54. 3	-75. 7	75. 7	4. 309
0.10	5. 20	56. 5	-83. 5	83. 5	4. 327
0.10	5. 50	58. 6	-91.4	91. 4	4. 345
0.10	5. 80	60.7	-99. 3	99. 3	4. 363
0. 10	6. 10	62.8	-107. 2	107. 2	4. 381
0.10	6. 40	65. 0	-115.0	115.0	4. 399
0. 10	6.80	67. 9	-122. 1	122. 1	4. 423
0.10	7. 20	70.7	-129.3	129.3	4. 447
0.10	7. 60	73. 3	-136. 7	136. 7	4. 470
0.10	8. 00	75.8	-144. 2	144. 2	4. 494
0.10	8. 40	78. 2	-151.8	151.8	4. 517
0.20	8. 90	81. 2	-158.8	158.8	4.546
0.20	9. 50	84. 6	-165.4	165. 4	4.580
0. 20	10. 10	87. 9	-172. 1	172. 1	4. 615
0. 20	10.60	90. 5	-179. 5	179. 5	4. 643
0. 20	11. 10	93. 0	-187. 0	187. 0	4. 671
0. 20	11. 70	95. 7	-194. 3	194. 3	4. 705
0.30	12. 40	98.8	-201. 2	201. 2	4. 743
0.30	13. 30	102. 4	-207. 6	207. 6	4. 793
0.30	14. 20	105.8	-214. 2	214. 2	4. 842
0.30	15. 10	109.0	-221.0	221. 0	4.890
0.40	16. 10	112. 4	-227.6	227. 6	4. 944
0.00	17. 40	116. 7	-233. 3	233. 3	5. 012

LLT測定データシート

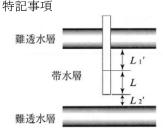
調査件名	知多市新庁舎等設計委託に伴う地盤調査				
測定番号	1	深度	GL -5.30 m		
測定日	6月24日	時間	9:00		
使用ゴム筒	生ゴムハイカー	N 値	0/45		
地質	盛土(シルト)				


測定者	梶原良仁	自然水位	GL -2.35 m
記 録 者	梶原茂樹	孔内水位	GL -1.95 m
機器番号	LLT-1	タンク高さ	GL +1.50 m


初期スタンドパイプの水位 Ho	0.30 cm
挿入後スタンドパイプの水位 Ho'	0.30 cm

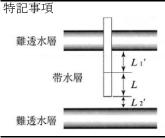

- [注記]1) PGは使用ゴムに応じてあらかじめ定めたH-PG曲線より求める。
 - 2) Psは(PG-P)を求め、その最大値とする。 Ps = 0.0 (kN/m^2)
 - 3) Peは次式から求める。 Pe = P + Ps PG

セル水圧	ガス圧	スタ	ソンドパイご	プ読みH'((cm)		Δ H (cm)	H(cm)	РG	PG-P	Ре	r
$P(kN/m^2)$	1	15	30	60	120			Н' 60 -Но	(kN/m ²)	(kN/m ²)	(kN/m²)	(cm)
360. 0	360.0	18. 00	18. 40	19.00			0.60	18. 70	121.0	-239.0	239. 0	5. 08
370. 0	370.0	19. 40	19.80	20.60			0.80		126. 3	-243. 7	243. 7	5. 16
380. 0	380. 0	21. 20	21.70	22. 70			1.00	22. 40	132. 4	-247.6	247. 6	5. 26
390. 0	390.0	23. 40	24.00	25. 10			1. 10	24. 80	137. 9	-252. 1	252. 1	5. 38
						Ш						


単孔を利用した透水試験(非定常法/直線勾配法) JGS 1314 知多市新庁舎等設計委託に伴う地盤調査 試験年月日 令和5年7月4日 調査件名 No.7別孔1 試 験 者 梶原良仁 地点番号 試 験 方 法 汲上げ(回復)/投入 天 候 試験区間の深さ GL m さ $4.00 \sim 4.50$ 管 \Box \mathcal{O} 高 GL m 0.30 試験区間の長さ L m 0.50 上 部離 隔 長 L1' 0.10 m 平衡水位測定 試験前/試験後 試験条件 下部離隔長 L2' m 0.50 平 衡 水 h₀GL m 試験区間の孔径 位 -3.10D m 0.066 試験開始水位差 sp m 0.450 測定パイプの内径 0.068 d m 質 盛土(砂) 等 内 0.068 名 価 径 de m 試 験 記 録 経過時間 水位測定管内 水位差 s h−t曲線 水位 h $(=h_0-h)$ t 経過時間 t (s) GL m m 100 200 300 400 500 600 0 -3.5500.450 -3.100 15 -3.4800.380 -3.15030 -3.4200.320 -3.200 45 -3.3800.280 -3.250 h (m) -3.3500.250 60 -3.300 立 一3.350 七 一3.450 脚 一3.450 90 -3.3350.235120 -3.3200.220 -3.285180 0.185

	武 映	桁 未					
直線上の点座標 t ₁ s 0	直接勾配 a 1/s	4.94E-03	透水係数 k m/s	4.47E-05			
直線上の点座標 t ₂ s 30		()	(2.24-)2) A I			
直線上の点座標 s ₁ m 0.450	$a = \frac{\log n}{n}$	(s_1/s_2)	$k = \frac{(2.3ae)2}{0.1}$	$k = \frac{(2.3de)2}{8L}\log(\frac{4L}{D})a$			
直線上の点座標 s ₂ m 0.320	1	$t_2 - t_1$	8 <i>L</i>	D			
			L1'<4Dの場合				

単孔を利用した透水試験(非定常法/直線勾配法) JGS 1314 知多市新庁舎等設計委託に伴う地盤調査 試験年月日 令和5年7月4日 調査件名 No.7別孔1 試 験 者 梶原良仁 地点番号 試 験 方 汲上げ(回復)/投入 天 候 試験区間の深さ GL m さ $4.00 \sim 4.50$ 管 \square \mathcal{O} 高 GL m 0.30 試験区間の長さ L m 0.50 上 部離隔 長 L1' 0.10 m 平衡水位測定 試験前/試験後 試験条件 下部離隔長 L2' m 0.50 平 衡 水 h₀GL m 試験区間の孔径 位 -3.10D m 0.066 試験開始水位差 sp m 測定パイプの内径 3.400 0.068 d m 質 盛土(砂) 等 内 0.068 名 価 de m 試 験 記 録 経過時間 水位測定管内 水位差 s h−t曲線 水位 h $(=h-h_0)$ t 経過時間 t(s) GL m m 100 200 300 400 500 600 0 0.300 3.400 0.350 15 0.285 3.3850.300 30 0.2703.370 0.250 45 0.2553.3550.200 € 0.150 0.240 3.340 60 五 0.100 中 0.050 0.215 90 3.315 120 0.1953.295 180 0.1453.245 極 0.000 240 0.1053.205-0.050• 300 0.0603.160 -0.100 0.0253.125 360 -0.150 420 -0.0203.080 -0.0703.030 480 log s-t 曲線 経過時間 t(s) 540 -0.0953.005 100 200 400 500 600 300 -0.1252.975 600

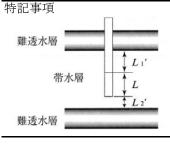

	_							
	水位差s(m)							
	岩			•	•	•	* •	•
		,						

結

				IP-V MOX	\rac{1}{\chint}}}}}}}} \right.}}}}}}}}}}}}}}}}}}				
直線上の点座標	t_1	S	0	直接勾配 a 1/s	1.29E-04	透水係数 k	m/s	1.17E-06	
直線上の点座標	t_2	S	60	1 ((2.2	1.10	A T	
直線上の点座標	s_1	m	3.400	$a = \frac{\log(1)}{2}$	s_1 / s_2)	$k = \frac{(2.3de)2}{9L}\log(\frac{4L}{R})a$			
直線上の点座標	s_2	m	3.340	t_2	$t_1 - t_1$	81	<u>C</u>	D'	
						L1'<4Dの場	合		

駘

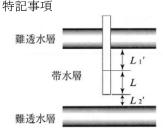
猛

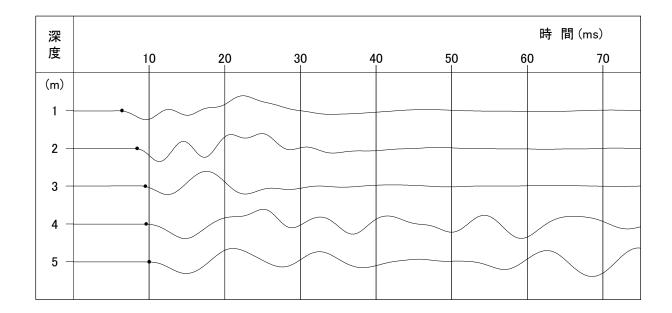


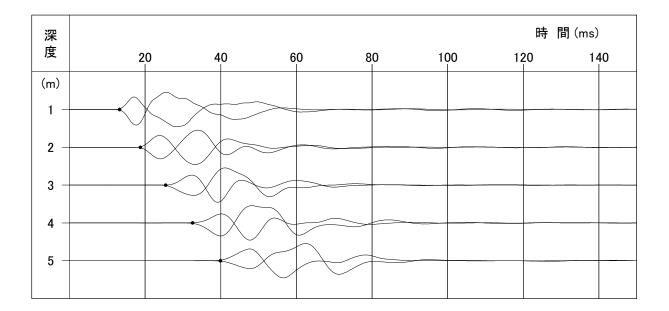
単孔を利用した透水試験(非定常法/直線勾配法) **JGS** 1314 知多市新庁舎等設計委託に伴う地盤調査 試験年月日 令和5年7月5日 調査件名 No.7別孔1 試 験 者 梶原良仁 地点番号 試 験 方 法 汲上げ(回復)/投入 天 候 試験区間の深さ GL m さ $5.60 \sim 6.10$ 管 \Box \mathcal{O} 高 GL m 0.30 試験区間の長さ L m 0.50 上 部離隔 L1' 0.00 m 平衡水位測定 試験条件 試験前/試験後 下部離隔長 L2' m 0.10 平 衡 水 h₀GL m 試験区間の孔径 位 -3.10D m 0.066 試験開始水位差 sp m 1.730 測定パイプの内径 0.068 d m 質 盛土(シルト質砂) 等 内 0.068 名 価 径 de m 試 験 録 経過時間 水位測定管内 水位差 s h−t曲線 水位 h $(=h_0-h)$ t 経過時間 t (s) GL m m 100 200 300 400 500 600 0 -4.8301.730 0.000 15 -4.5501.450 -1.00030 -4.4001.300 45 -4.2801.180 -2.000h (m) -4.210 1.110 60 90 -4.0800.980 -3.000 管内水位 120 -3.8400.740 -4.000 180 -3.6400.540 240 -3.5000.400-5.000 300 -3.3400.240-3.310 0.210 360 -6.000 420 -3.2300.130 -3.1700.070 480 log s-t 曲線 経過時間 t(s) 540 -3.1600.060 100 200 300 400 500 600 -3.1500.050600 10 水位差 s (m) 0.1

				試験	結 果		
直線上の点座標	t_1	S	0	直接勾配 a 1/s	3.21E-03	透水係数 k m/s	2.91E-05
直線上の点座標	t_2	S	60			(2.24.)2	4.7
直線上の点座標	s_1	m	1.730	$a = \frac{\log}{2}$	(s_1/s_2)	$k = \frac{(2.3de)2}{3.4}$	$\log(\frac{4L}{R})a$
直線上の点座標	s_2	m	1.110	- u -	$t_2 - t_1$	8L	D

L1'<4Dの場合

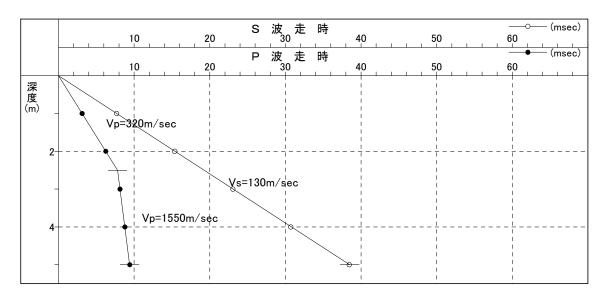

0.01

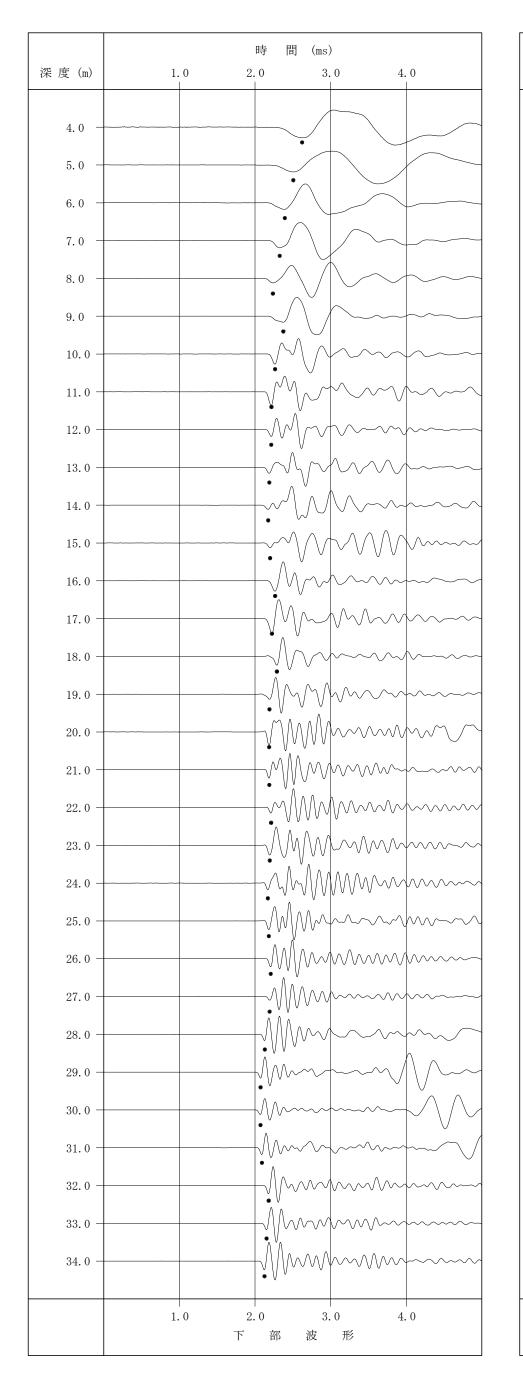


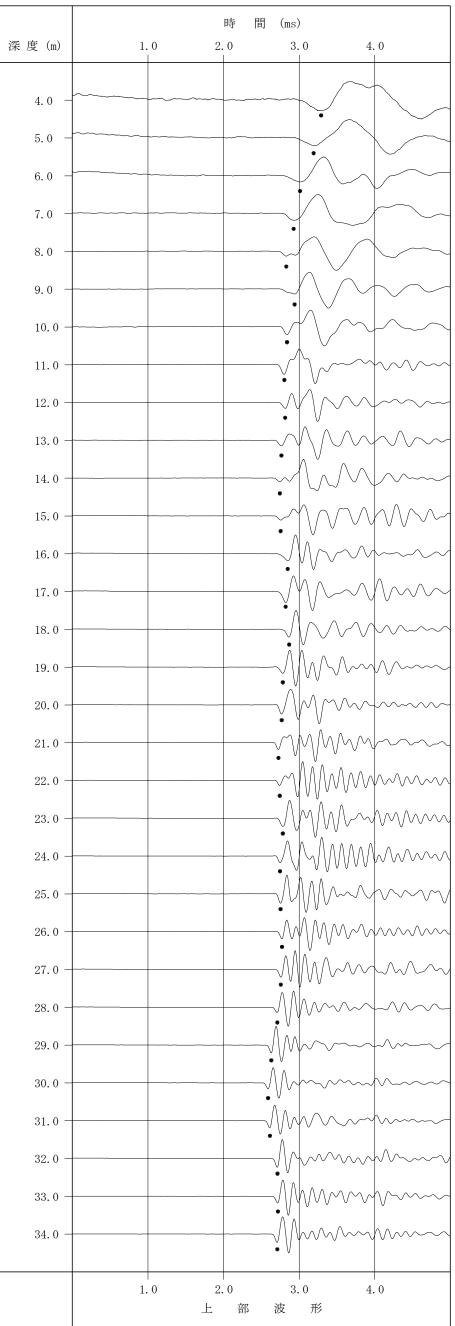

単孔を利用した透水試験(非定常法/直線勾配法) JGS 1314 知多市新庁舎等設計委託に伴う地盤調査 試験年月日 令和5年7月5日 調査件名 No.7別孔1 試 験 者 梶原良仁 地点番号 試 験 方 法 汲上げ(回復)/投入 天 候 試験区間の深さ GL m さ $5.60 \sim 6.10$ 管 \Box \mathcal{O} 高 GL m 0.30 試験区間の長さ L m 0.50 上 部離 隔 長 L1' 0.00 m 平衡水位測定 試験前/試験後 試験条件 下部離隔長 L2' m 0.10 平 衡 水 h₀GL m 試験区間の孔径 位 -3.10D m 0.066 試験開始水位差 sp m 3.400 測定パイプの内径 d m 0.068 質 盛土(シルト質砂) 等 内 0.068 名 価 de m 録 試 験 経過時間 水位測定管内 水位差 s h−t曲線 水位 h $(=h-h_0)$ t 経過時間 t(s) GL m m 100 200 300 400 500 600 0 0.300 3.400 0.400 15 0.285 3.3850.300 30 0.2753.375 45 0.2653.3650.200 h (m) 0.250 3.350 60 • m 0.000 0.100 0.220 90 3.320 120 0.2003.300 0.1503.250 180 • 240 0.1003.200 -0.100 300 0.0503.150 0.0103.110 360 -0.200 420 -0.0353.065 -0.0853.015 480 540 -0.1302.970 -0.1752.925 600

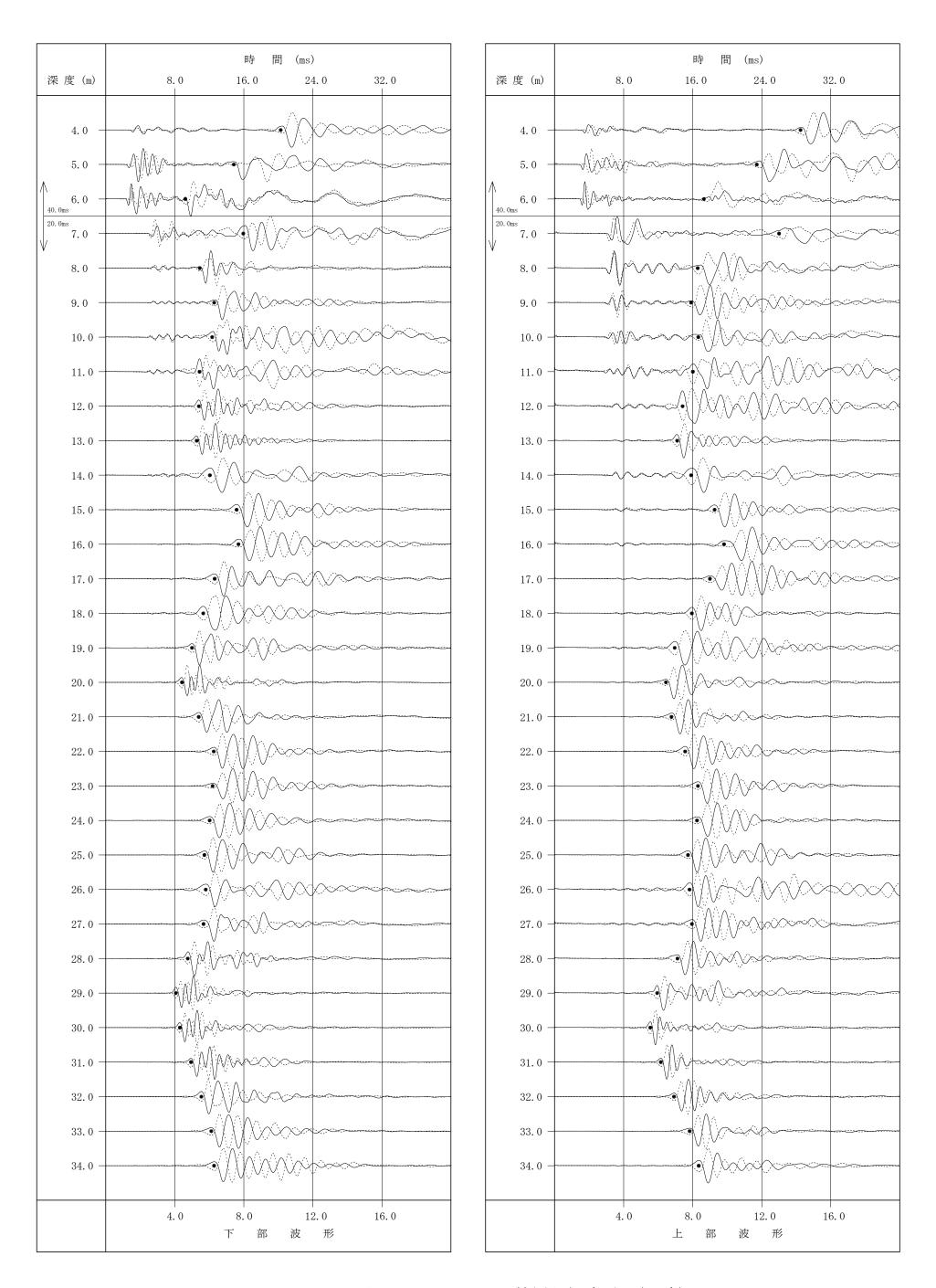
log s−t 囲粉	Ŕ	経過時間 t (s)									
0	100	200	300	400	500	600					
10											
~											
水位差 s (m)	• • •	• •	•		A A						
拉											
¥											
1 🖵											

				武 岁	면	府 未					
直線上の点座標	t_1	S	0	直接勾配 a	1/s	1.07E-04	透水係数 k	m/s	9.68E-07		
直線上の点座標	t_2	S	30		1 ((2.2	1.)2	A T		
直線上の点座標	s_1	m	3.400	a =	log($\frac{s_1 / s_2}{s_1 / s_2}$	$k = \frac{(2.36)}{100}$	$k = \frac{(2.3de)2}{\log(\frac{4L}{a})a}$			
直線上の点座標	s_2	m	3.375		t_2	$-t_1$	8.	L	D		
							L1'<4Dの場	合			
d 土 ニコ ナナナボ											

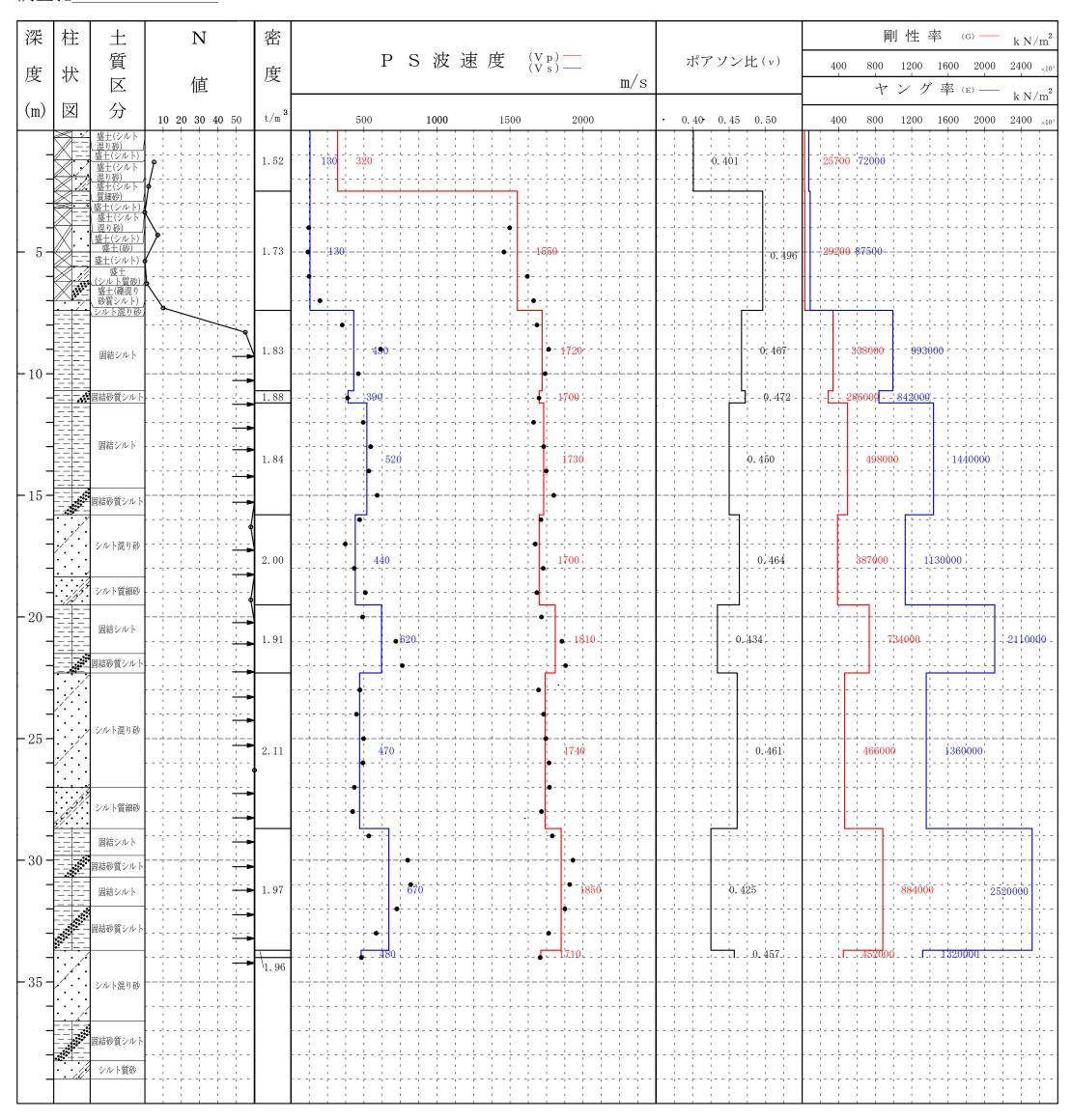


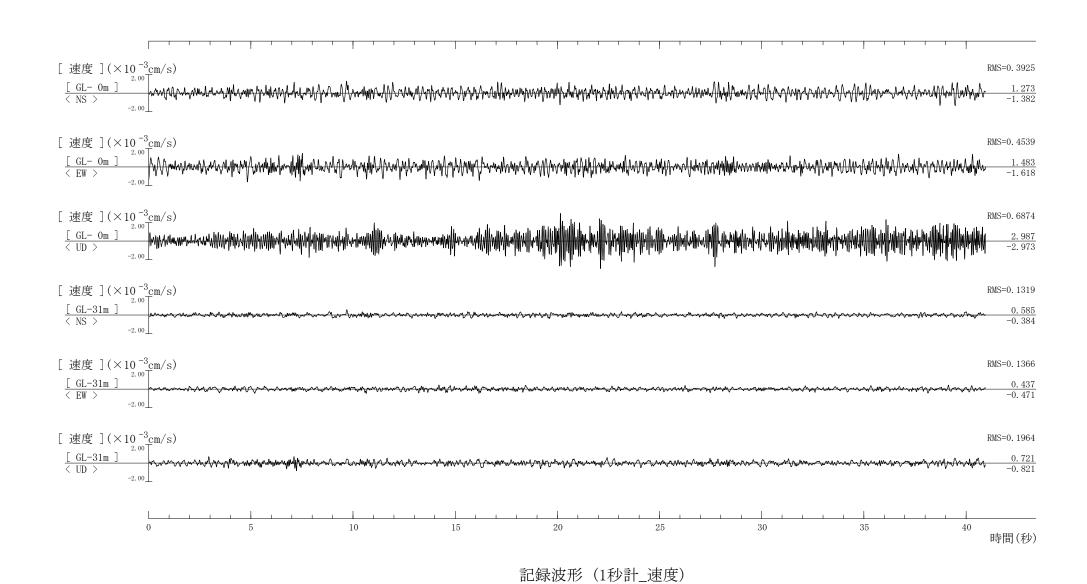

PS検層 読み取り・補正(No.7)

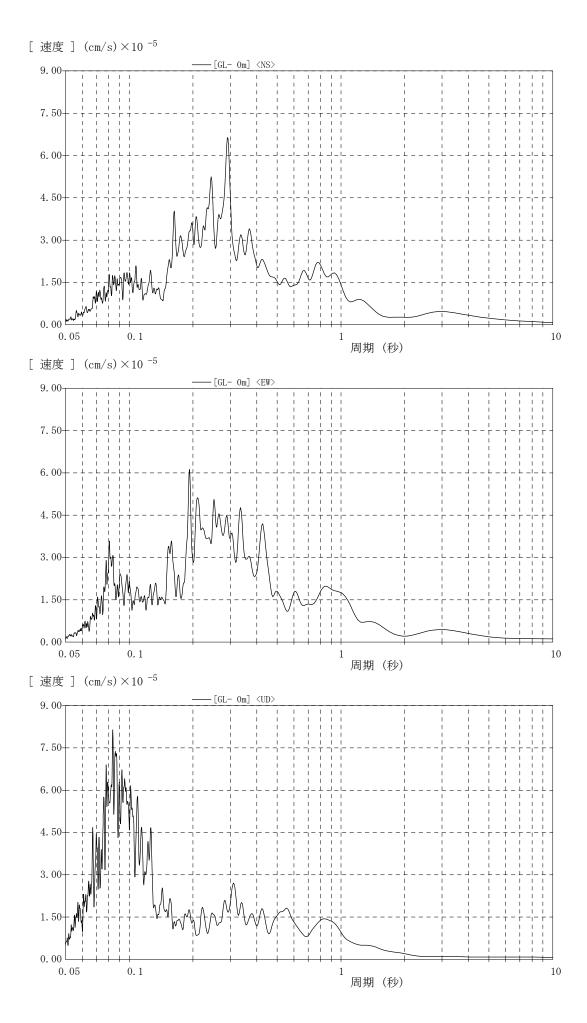

P波S波振源距離(m)1.801.40比高差(m)0.000.00

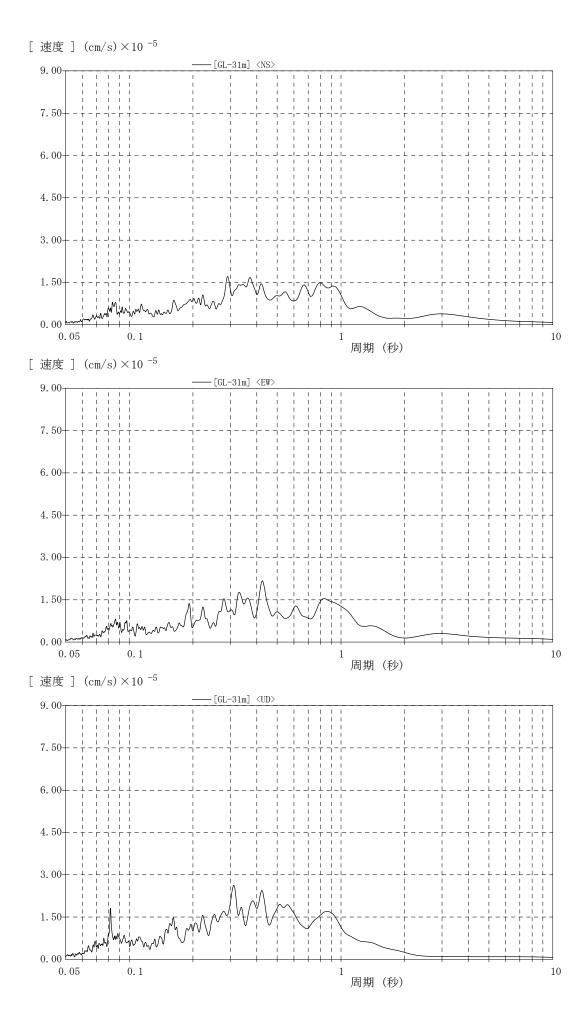

深度	P:	波	S波		
(m)	読取値 ^(msec)	距離補正値 ^(msec)	読取値 ^(msec)	距離補正値 ^(msec)	
1.0	6.43	3.12	13.22	7.69	
2.0	8.40	6.24	18.74	15.35	
3.0	9.48	8.13	25.42	23.04	
4.0	9.62	8.77	32.53	30.70	
5.0	10.01	9.42	39.91	38.43	

走時曲線図(No.7)

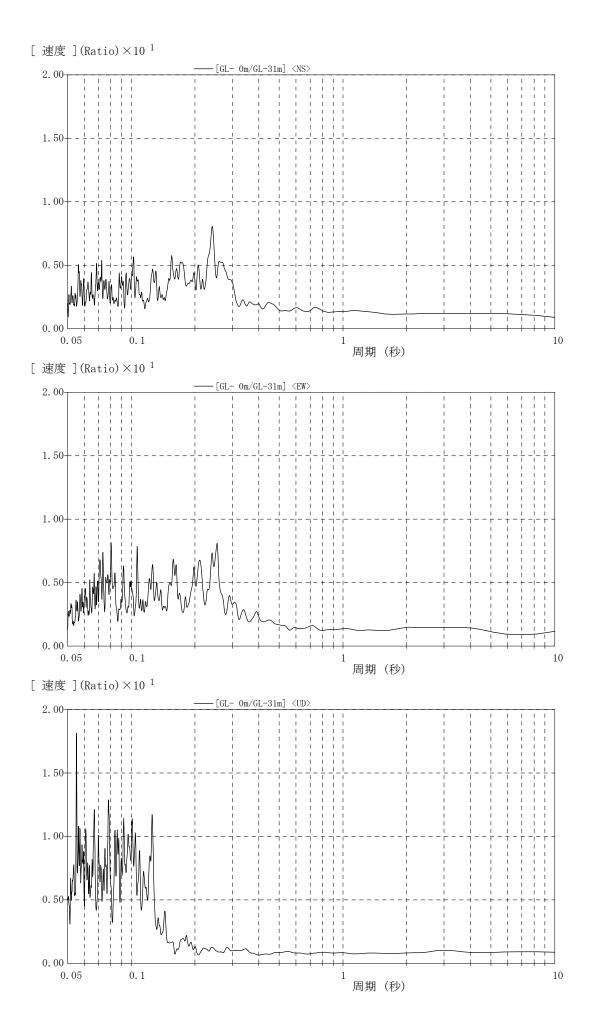


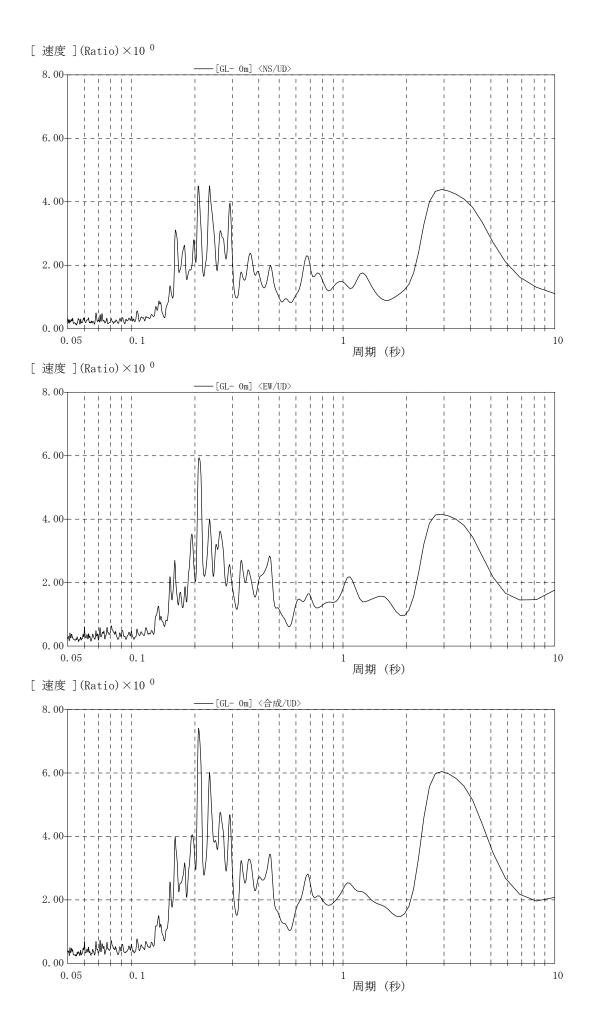

			サ	スペンショ	iンPS検	層 読取-	-覧 −N	o. 7—		
深度			P 波			S 波				
(m)	下部(ms)	上部(ms)	差(ms)	累積(ms)	Vp(m/s)	下部(ms)	上部(ms)	差(ms)	累積(ms)	Vs(m/s)
4	2.621	3.289	0.668	0.668	1497	20.255	28.483	8.228	8.228	122
5	2.505	3.191	0.686	1.354	1458	14.823	23.416	8.593	16.821	116
6	2.392	3.010	0.618	1.972	1618	9.205	17.302	8.097	24.918	124
7	2.324	2.926	0.602	2.574	1661	7.963	13.001	5.038	29.956	198
8	2.235	2.829	0.594	3.168	1684	5.437	8.285	2.848	32.804	351
9	2.372	2.939	0.567	3.735	1764	6.276	7.902	1.626	34.430	615
10	2.263	2.838	0.575	4.310	1739	6.155	8.322	2.167	36.597	461
11	2.215	2.804	0.589	4.899	1698	5.427	8.008	2.581	39.178	387
12	2.212	2.814	0.602	5.501	1661	5.387	7.410	2.023	41.201	494
13	2.186	2.764	0.578	6.079	1730	5.264	7.099	1.835	43.036	545
14	2.172	2.744	0.572	6.651	1748	6.027	7.908	1.881	44.917	532
15	2.198	2.754	0.556	7.207	1799	7.573	9.268	1.695	46.612	590
16	2.264	2.848	0.584	7.791	1712	7.682	9.810	2.128	48.740	470
17	2.222	2.820	0.598	8.389	1672	6.305	8.996	2.691	51.431	372
18	2.288	2.867	0.579	8.968	1727	5.642	7.949	2.307	53.738	433
19	2.189	2.783	0.594	9.562	1684	4.990	6.956	1.966	55.704	509
20	2.185	2.768	0.583	10.145	1715	4.403	6.445	2.042	57.746	490
21	2.186	2.725	0.539	10.684	1855	5.378	6.770	1.392	59.138	718
22	2.211	2.743	0.532	11.216	1880	6.249	7.562	1.313	60.451	762
23	2.193	2.783	0.590	11.806	1695	6.180	8.299	2.119	62.570	472
24	2.168	2.746	0.578	12.384	1730	6.013	8.246	2.233	64.803	448
25	2.180	2.753	0.573	12.957	1745	5.708	7.721	2.013	66.816	497
26	2.207	2.773	0.566	13.523	1767	5.782	7.813	2.031	68.847	492
27	2.192	2.757	0.565	14.088	1770	5.653	7.955	2.302	71.149	434
28	2.127	2.710	0.583	14.671	1715	4.746	7.117	2.371	73.520	422
29	2.072	2.631	0.559	15.230	1789	4.058	5.937	1.879	75.399	532
30	2.070	2.588	0.518	15.748	1931	4.288	5.540	1.252	76.651	799
31	2.089	2.613	0.524	16.272	1908	4.929	6.148	1.219	77.870	820
32	2.179	2.712	0.533	16.805	1876	5.532	6.911	1.379	79.249	725
33	2.151	2.718	0.567	17.372	1764	6.108	7.822	1.714	80.963	583
34	2.124	2.710	0.586	17.958	1706	6.270	8.345	2.075	83.038	482

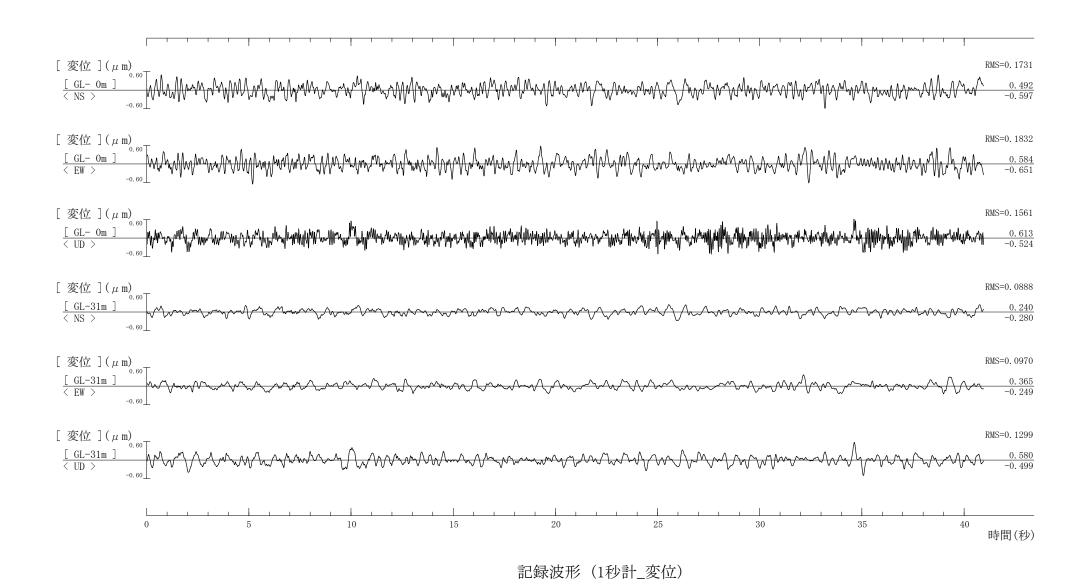

調査孔 No. 7

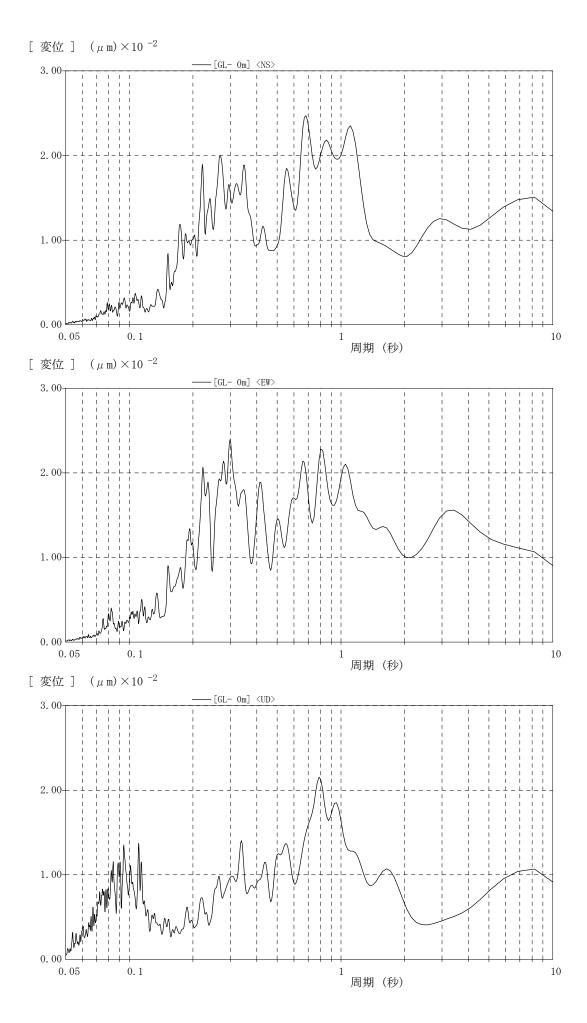

調査孔____No.7

(n) 日	深	柱	土質	N	孔 径	計数率	 密 度	密
(a) [8] (b) (c) 20 20 40 50 (c)	度	状	区	値				度
10 10 10 10 10 10 10 10	(m)	図	分	10 20 30 40 50	40 80 120 160		1.00 2.00 3.00	
1.72	-	, , ,	盛土(シルト 混り砂) 盛十(シルト				MAN JAMA	1. 52
1.82	- 5-		<u>盛土(シルト)</u> <u>盛土(シルト</u> <u>混り砂)</u> <u>盛土(シルト)</u> <u>盛土(砂)</u> <u>盛土(シルト)</u>					1.73
1.84	-		- - - - -			May And May an	W A A A A A A A A A A A A A A A A A A A	1.83
15 国際の第204 1.84	10-	Lt	田盆砂磨シルト					1 88
- 20	_		-					
- 20	- 15 - 15 -		固結砂質シルト					
1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.97 1.97 1.97 1.97 1.97 1.97 1.96	_	· // · · · · · · · · · · · · · · · · ·						2.00
- 25 - シルト説り砂 - 2.11 - 2.11 - 30 - 選結の質シルト - 35 - シルト説り砂 - シルト記り砂 - シルト記り - シルト記し	-20 -		固結シルト					1.91
2ルト質細砂 1.97 1.96 1.9	-					Monday		
1.97	- 25 - - -				,		Www.	2. 11
30	-			· · · · · · · · · · · · · · · · · · ·	}			
国結砂質シルト - 35 - · · · シルト混り砂 - · · · · · · · · · · · · · · · · · · ·	-30 -		固結砂質シルト					1.97
35 - ・・・シルト混り砂	-					Monte		
	- 35 -		シルト混り砂					\1.96
- · · // シルト質砂	-		固結砂質シルト シルト質砂					

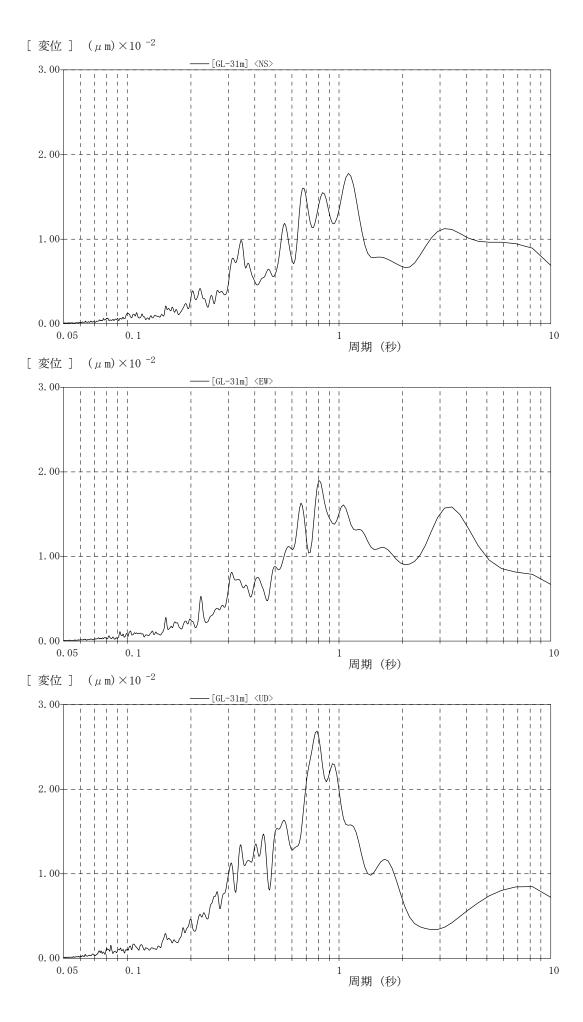



フーリエスペクトル(1秒計_速度)

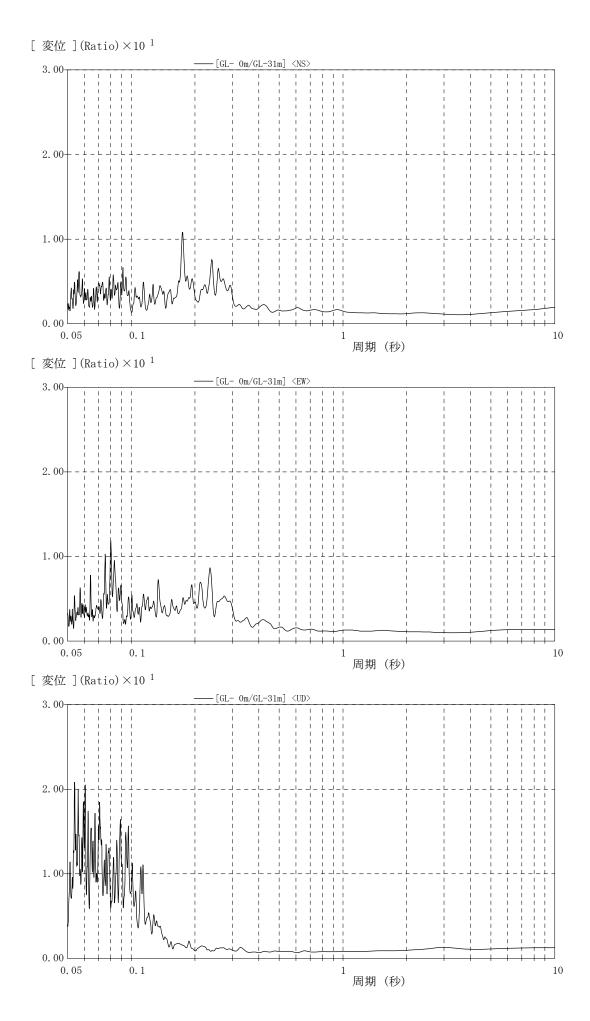

フーリエスペクトル(1秒計_速度)

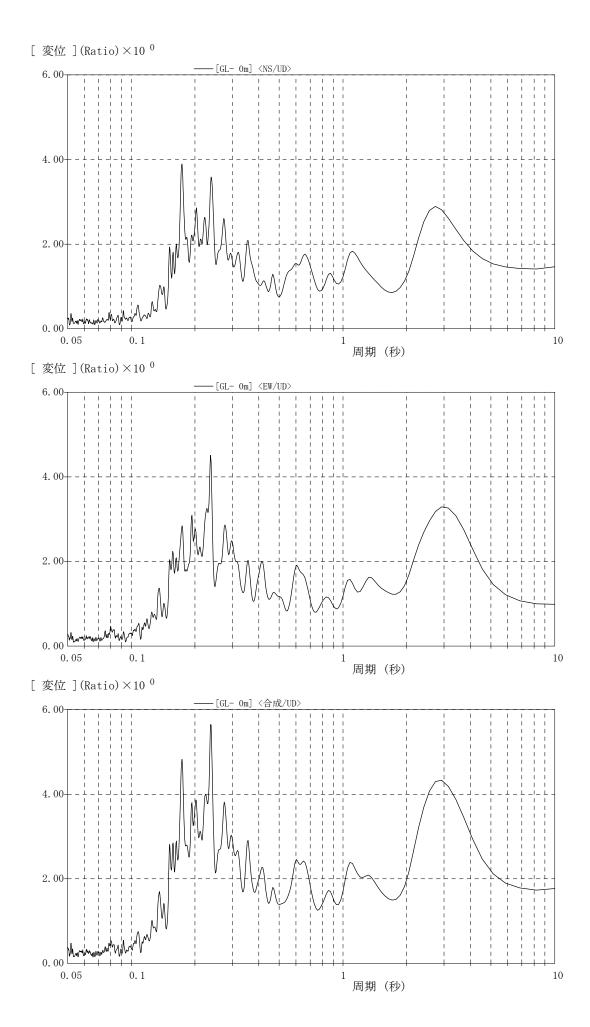


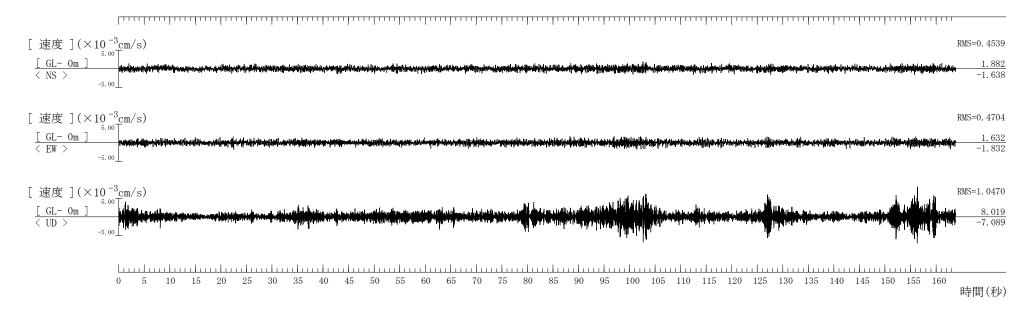
フーリエスペクトル比(1秒計_速度)

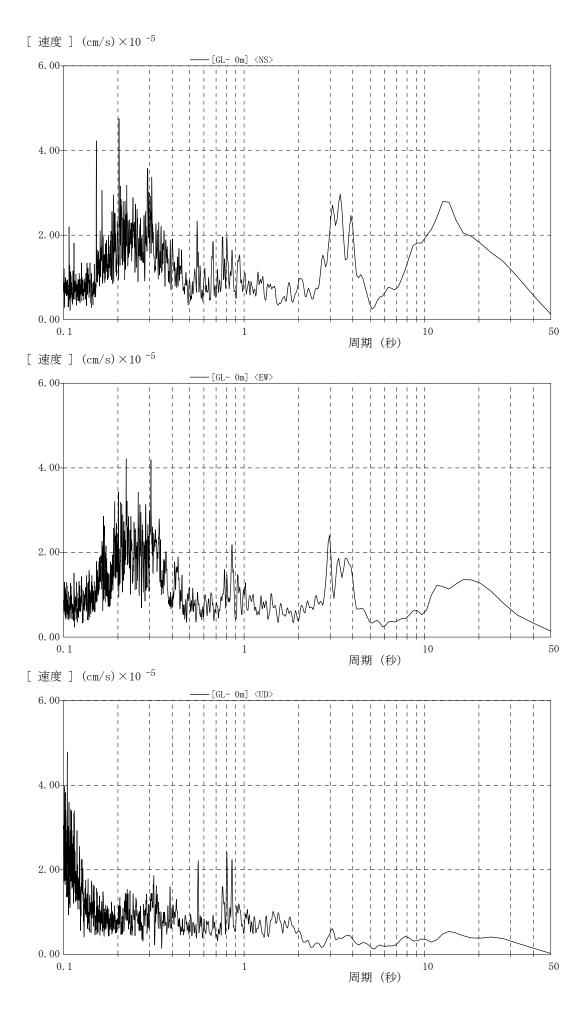


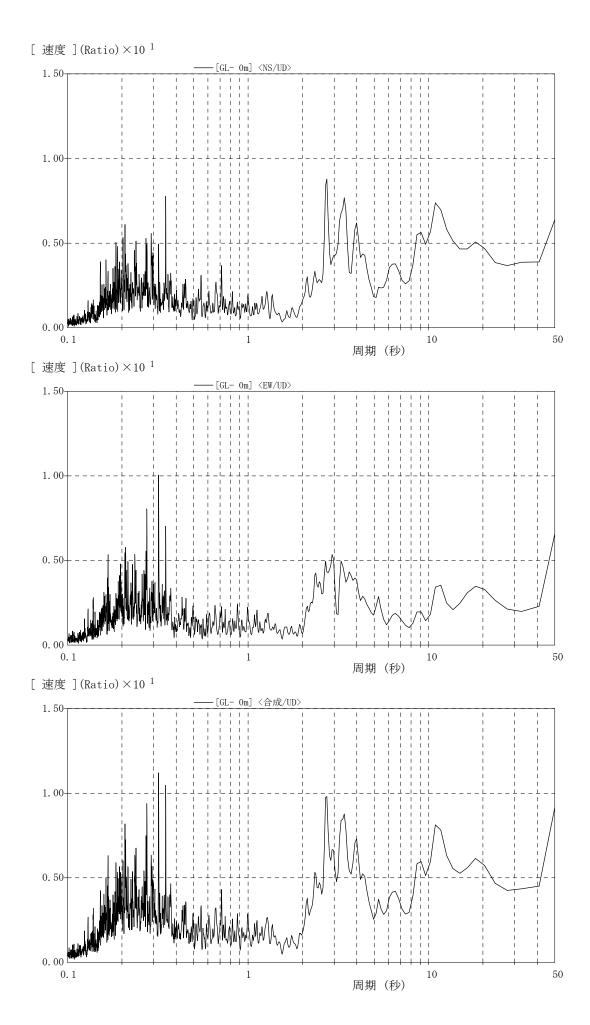
H/Vスペクトル(1秒計_速度)

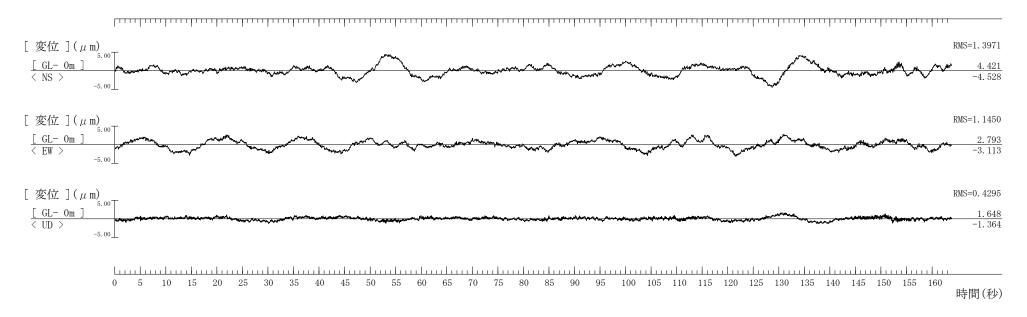


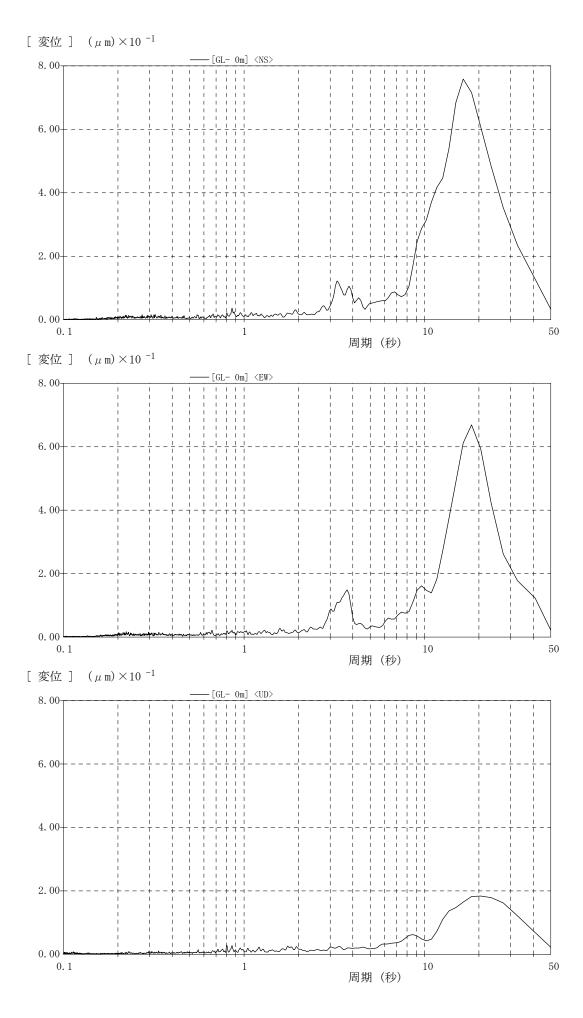

フーリエスペクトル(1秒計_変位)

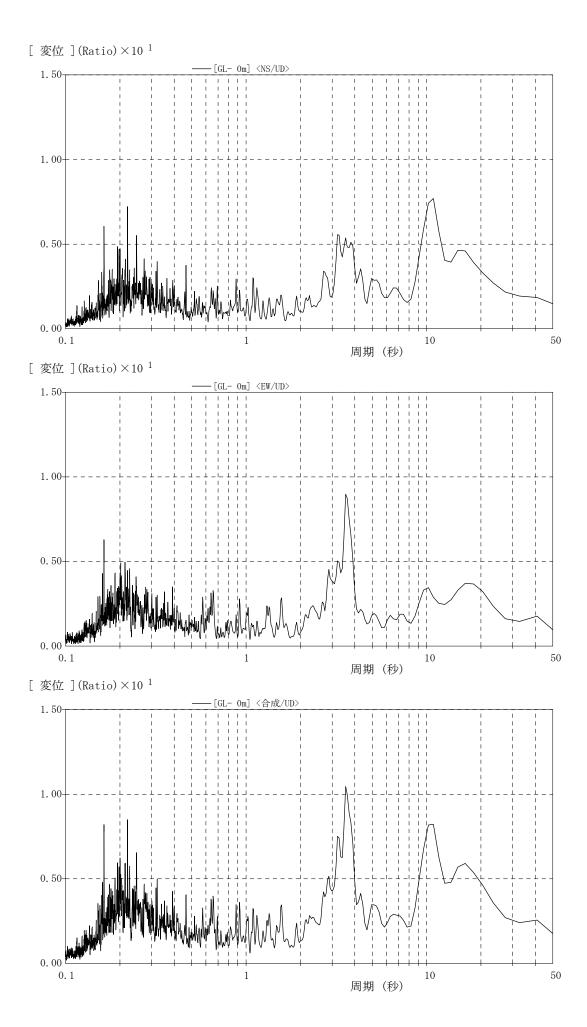

フーリエスペクトル(1秒計_変位)


フーリエスペクトル比(1秒計_変位)


H/Vスペクトル(1秒計_変位)


記録波形(10秒計_速度)


フーリエスペクトル(10秒計_速度)


H/Vスペクトル(10秒計_速度)

記録波形(10秒計_変位)

フーリエスペクトル(10秒計_変位)

H/Vスペクトル(10秒計_変位)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

整理年月日

2023年 7月 24日

整理担当者 池田 謙信 試 号 1-P8 (深 さ) $(8.15 \sim 8.45 \text{m})$ 湿 潤 密 度 $\rho_{\text{\tiny t}}$ g/cm³ 乾 燥 密 度 ρ_d g/cm² 土粒子の密度 ho_s g/cm 自然含水比 🐠 " % 隙 比 *e* 間 般 和 度 S_r 飽 石 分 (75mm以上) % 分¹) (2~75mm) % 粒 砂 分¹¹ (0.075~2mm) % シルト分¹ (0.005~0.075mm) % 粘土分10.005mm糒 % 最大粒径 均等係数U。 度 50%粒径D50 20%粒径D20 % 液性限界砂质 塑性限界砂。 % 塑性指数 I。 地盤材料の 分 分 類 名 類 分類記号 試験方法 圧 圧縮指数 C。 圧密降伏応力 p。 kN/m^2 密 一軸圧縮強さ q u kN/m² 軸 一軸圧縮強さ q w kN/m 圧 一軸圧縮強さ q u kN/m 縮 一軸圧縮強さ q u kN/m² 試験条件 せ c kN/m² 全 応 力 ϕ $^{\circ}$ W c′ kN/m² 有効応力 φ′° 断 細粒分含有率 Fc % 13.8 等価せん断剛性率 G。 MN/m^2 履歴減衰率 h。 % 繰り返し強さ応力比 RL=20

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

調査件名 知多市新庁舎等設計委託に伴う地盤調査

整理年月日

2023年 7月 24日

整理担当者 池田 謙信

							整埋担当有	池田 謙信	
絬	料	番	号	2-P3	2-P4	2-P6	2-P7	2-P8	
(深	さ)	$(3.15\sim3.45\text{m})$	(4.15~4.60m)	$(6.15\sim6.45\text{m})$	$(7.15 \sim 7.45 \text{m})$	$(8.15 \sim 8.45 \text{m})$	
	湿潤密	度 ρ _t	$\rm g/cm^3$						
-	乾 燥 密	度 ρ d	$\rm g/cm^3$						
	土粒子の密	度 ρ _s	$\rm g/cm^3$	2. 632	2.688	2. 651			
	自然含水	比 w	%						
般	間隙	比 <i>e</i>							
	飽 和	度 S _r	%						
	石 分	(75mm	以上) %						
	礫 分1)	$(2 \sim 75)$	mm) %	0.4	0.0	9.6			
粒	砂 分1)	(0.075~	2mm) %	73. 0	4. 2	70.4			
	シルト分 1)	(0. 005~0. (175mm) %	16. 3	35. 8	9.0			
	粘土分□	(0.005m	m未満) %	10. 3	60. 0	11.0			
	最大粒	径	mm	4. 75	2	9.5			
度	均 等 係	数 <i>U</i> 。		70.3	_	171			
	50%粒	径 D50	mm	0. 2588	0.0029	0.4617			
	20%粒	径 D20	mm	0. 0227	_	0.0750			
コン	液性限	界 w 』	%						
システ	塑性限	界 $w_{\scriptscriptstyle m P}$	%						
シシ	塑性指	数 I,							
コンシステンシー特性									
分	地盤材料	の		細粒分質砂	細粒土	礫まじり			
Mer:	分 類	名				細粒分質砂			
類	分類記	号		(SF)	(F)	(SF-G)			
	試 験 方	法							
圧	圧縮指	数 C。							
	圧密降伏応	力 p。	kN/m^2						
密									
_	一軸圧縮強								
軸	一軸圧縮強	₹ q u	kN/m^2						
圧縮	一軸圧縮強	₹ q u	kN/m^2						
附自	一軸圧縮強	さ q u	kN/m^2						
	試 験 条	件							
せ	全応力	c	kN/m^2						
h		₫	°						
10	有効応力		kN/m^2						
断	一円 タタス ルい ノ ʃ		, ' °						
	細粒分含有	率 Fc	%				13. 4	22.6	
	等価せん断剛性	生率 G ₀	MN/m^2						
	履歴減衰	率 h ₀	%						
	繰り返し強さ応え	力比	RL=20						
特記事	車 1直						1) 7	5分を除いた75mm	土油の上所社が

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 \rightleftharpoons 0.0102kgf/cm^2]$

調査件名 知多市新庁舎等設計委託に伴う地盤調査

整理年月日

2023年 7月 24日

整理担当者 池田 謙信 6-P7 試 号 6-P6 (深 さ) $(6.15\sim6.45\text{m})$ $(7.15\sim7.35\text{m})$ 湿 潤 密 度 ρ_t g/cm³ 乾 燥 密 度 ρ_d g/cm² 土粒子の密度 ρ_s g/cm³ 2.648 自然含水比 w。 % 隙 比 *e* 間 般 和 度 S_r 飽 石 分 (75mm以上) % 分¹⁾ (2~75mm) % 1.9 粒 砂 分¹¹ (0.075~2mm) % 53. 5 シルト分¹ (0.005~0.075mm) % 20.4 粘土分10.005mm糒 % 24.2 最大粒径 9.5 均等係数U。 度 50%粒径D50 0.1046 20%粒径D20 0.0033 % 液性限界砂质 塑性限界砂。 % 塑性指数 I。 地盤材料の 細粒分質砂 分 分 類 名 類 分類記号 (SF) 試験方法 圧 圧縮指数 C。 圧密降伏応力 p。 kN/m^2 密 一軸圧縮強さ q u kN/m² 軸 一軸圧縮強さ q w kN/m 圧 一軸圧縮強さ q w kN/m 縮 一軸圧縮強さ q u kN/m² 試験条件 せ c kN/m² 全 応 力 ϕ $^{\circ}$ W c′ kN/m² 有効応力 φ′° 断 細粒分含有率 Fc % 15.1 等価せん断剛性率 G。 MN/m^2 履歴減衰率 h。 % 繰り返し強さ応力比

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

調査件名 知多市新庁舎等設計委託に伴う地盤調査

整理年月日

2023年 7月 24日

整理担当者 池田 謙信

							正/王1四二.日	16 H MAIL	
試		番	号、	7-T3	7-S4	7-P5	7-P6	7-P7	
(深	さ		$(3.20\sim3.70\text{m})$		$(5.15\sim5.60\text{m})$	$(6.20\sim6.45\text{m})$	$(7.15\sim7.40\text{m})$	
	湿潤密			1. 610	1.750				
_	乾燥密	度 ρ _d	g/cm ³	0. 976	1. 369				
	土粒子の密	度 ρ _s	g/cm ³	2. 658	2.617	2. 673	2. 658		
	自然含水.	比 w $_{\scriptscriptstyle extrm{ iny }}$	%	67. 0	18. 7				
般	間隙.	比 <i>e</i>		1. 735	0. 917				
	飽 和	度 S _r	%	100. 1	79. 3				
	石 分	(75mm)	以上) %						
	礫 分1)	$(2 \sim 751$	mm) %	0.0	1.6	0.0	20.0		
粒	砂 分1)(0.075~	2mm) %	0. 2	94. 1	3.6	38. 5		
	シルト分1)	0.005~0.0	75mm) %	54. 6	1. 6	40.8	18. 6		
	粘土分1)(0.005m	m未満) %	45. 2	2. 7	55. 6	22. 9		
	最大粒	· 径	mm	0. 250	9. 5	2	26. 5		
度	均等係	数 <i>U</i> 。			3. 63	_			[
	50%粒	径 <i>D50</i>	mm	0.0066	0. 4558	0.0033	0. 1433		
	20%粒	径 <i>D20</i>	mm		0. 2188	_	0.0031		
コン	液性限	界 w 』	%	62. 4					
システ	塑性限	界 w 。	%	34. 7					
コンシステンシー特性	塑性指	数 I _p		27. 7					
特性									
分	地盤材料	の		シルト	分級された砂	細粒土	細粒分質		
	分 類	名		(高液性限界)			礫質砂		
類	分類記	号		(MH)	(SP)	(F)	(SFG)		
	試験方	法		土の段階載荷による圧密試験					
圧	圧縮指	数 <i>C</i> 。		1.08					
	圧密降伏応	力 p。	kN/m^2	130					
密									
_	一軸圧縮強	් <i>q</i> u	$kN/m^{\scriptscriptstyle 2}$	67. 4					
軸	一軸圧縮強	t qս	kN/m^2	69. 0					
圧	一軸圧縮強	් <i>q</i> u	kN/m^2						
縮	一軸圧縮強	t qս	kN/m^2						
	試験条	件							
せ	<u></u> Д Н	С	kN/m²						
,	全 応 力	¢	°						
h	七 热 代 书	c'	kN/m²						
断	有効応力	¢)′°						
	細粒分含有	率 Fc	%					12.6	
	等価せん断剛性	率 G o	MN/m^2	13. 148	26. 153				
İ	履歴減衰	率 h ₀	%	13. 206	17.816				[
Ī	繰り返し強さ応力	J比	RL=20		0. 214				
İ									
特記事	F T百							 5分を除いた75mm	

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

土 粒 子 の 密 度 試 験 (測定)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 20日

試 験 者 石原 聖子

			D _T (
試料番号(深さ)	2-P3 (3.15	$5\sim$ 3.45m)		2-P4 (4.15~4.60m)				
ピ ク ノ メ ー タ ー No.	136	137	138	139	140	141		
(試料+蒸留水+ピクノメーター)の質量 m_{b} g	133. 103	133. 489	129. 467	134. 956	133. 557	129. 486		
m \hat{e} はかったときの内容物の温度 T $^{\circ}$	24. 0	24. 0	24. 0	24. 0	24. 0	24. 0		
$T^{\mathbf{C}}$ における蒸留水の密度 $ ho_{w}(T)$ g/cm $^{\mathbf{c}}$	0. 99730	0. 99730	0. 99730	0. 99730	0. 99730	0.99730		
温度T℃の蒸留水を満たしたときの (蒸留水+ピクノメーター)質量 m ag	119.388	120. 419	117. 590	124. 297	122. 981	117. 986		
容 器 No.	A136	A137	A138	A139	A140	A141		
試 料 の (炉乾燥試料+容器)質量g	88. 493	87. 298	85. 292	82. 628	80. 889	84. 649		
炉乾燥質量 容 器 質 量 g	66. 413	66. 253	66. 168	65. 680	64. 087	66. 353		
$m_{ m s}$ g	22. 080	21. 045	19. 124	16. 948	16. 802	18. 296		
土 粒 子 の 密 度 ρ _s g/cm ²	2.632	2. 632	2. 632	2. 688	2. 691	2. 685		
平 均 値 ρ _s g/cm ²		2. 632			2. 688			
試料番号(深さ)	2-P6 (6.15	$5\sim$ 6.45m)						
ピクノメーターNo.	142	143	144					
$(試料+蒸留水+ピクノメーター)の質量 m_{ ext{b}}g$	140. 565	141.669	135. 420					
m .をはかったときの内容物の温度 T $^{\circ}$	24.0	24. 0	24.0					
T^{∞} における蒸留水の密度 $\rho_w(T)$ g/cm	0. 99730	0. 99730	0. 99730					
温度7℃の蒸留水を満たしたときの i) (蒸留水+ピクノメーター)質量 m ag	123. 510	125. 536	120. 900					
容 器 No.	A142	A143	A144					
試 料 の (炉乾燥試料+容器)質量g	96. 216	96. 877	90. 123					
炉乾燥質量 容 器 質 量 g	68. 877	71. 031	66. 838					
$m_{\scriptscriptstyle \mathrm{S}}$ g	27. 339	25. 846	23. 285					
土 粒 子 の 密 度 ρ _s g/cm ²	2.651	2.654	2. 649					
平 均 値 ρ _s g/cm ²		2.651						
試料番号(深さ)								
ピクノメーター No.								
$m_{\text{\tiny b}}$ g (試料+蒸留水+ピクノメーター)の質量 $m_{\text{\tiny b}}$ g								
m をはかったときの内容物の温度 T $^{\circ}$								
T \mathbb{C} における蒸留水の密度 $\rho_w(T)$ g/cm								
温度 T^{∞} の蒸留水を満たしたときの m_{a} g m_{a} g								
容 器 No.						-		
試 料 の (炉乾燥試料+容器)質量g								
炉乾燥質量 容器質量 g								
$m_{ m s}$ g								
土 粒 子 の 密 度 ρ _s g/cm ²								
平 均 値 ρ _s g/cm ²			1					
44	1			I				

特記事項

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$$

土 粒 子 の 密 度 試 験 (測定)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 20日

試 験 者 石原 聖子

				試	験 者	石原 聖子	
試 料 番	号(深 さ)	6-P6 (6.15	\sim 6.45m)				
ピクノメ	ー タ ー No.	145	146	147			
(試料+蒸留水+ と	ピクノメーター)の質量 m ь g	131. 373	131. 911	134. 640			
mをはかったと	きの内容物の温度 <i>T</i> °C	24.0	24.0	24.0			
T° における δ	 蒸留水の密度 ρω(T)g/cm³	0. 99730	0. 99730	0. 99730			
温度7℃の蒸留水 (蒸留水+ピクノ	を満たしたときの ¹⁾ /メーター) 質量 m ag	118.069	118. 101	121. 891			
	容 器 No.	A145	A146	A147			
試料の	(炉乾燥試料+容器)質量g	87. 551	88. 442	86. 071			
炉乾燥質量	容器質量g	66. 225	66. 286	65. 603			
	m_{s} g	21. 326	22. 156	20. 468			
土 粒 子	の 密 度 ρ_s g/cm ³	2. 651	2. 648	2. 644			
平均	値 $ ho_s$ g/cm 3		2. 648				
試 料 番	号(深 さ)						
ピクノメ	- タ - No.						
(試料+蒸留水+1	ピクノメーター) の質量 $m_{ ext{ iny b}}$ g						
m をはかったと	きの内容物の温度 T $^{\circ}$ C						
<i>T</i> ℃における剤	蒸留水の密度 ρω(T)g/cm³						
温度T℃の蒸留水 (蒸留水+ピク)	を満たしたときの 1) /メーター) 質量 加 ª g						
()111 121	容器 No.						
試 料 の	(炉乾燥試料+容器)質量g						
炉乾燥質量	容 器 質 量 g						
	$m_{ m s}$ g						
土 粒 子	の 密 度 ρ_s g/cm ³						
平均	値 ρ _s g/cm³						
試 料 番	号 (深 さ)						
ピクノメ	- タ - No.						
(試料+蒸留水+ b	ピクノメーター)の質量 m ь g						
mをはかったと							
<i>T</i> ℃における剤	 蒸留水の密度 ρω(Τ)g/cm³						
温度 <i>T</i> ℃の蒸留水 (蒸留水+ピクノ	 を満たしたときの 1)_						
	容 器 No.						
試料の	(炉乾燥試料+容器)質量g						
炉乾燥質量	容 器 質 量 g						
	$m_{ m s}$ g						
土 粒 子	の 密 度 $ ho_s$ g/cm 3						
平均				I			I

特記事項

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$$

土 粒 子 の 密 度 試 験 (測定)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 11日

試 験 者 石原 聖子

				pr\					
試 料 番	号(深さ)	7-T3 (3.20	\sim 3.70m)		7-S4 (3.90∼4.90m)				
ピクノメ	- タ - No.	34	35	36	151	152	153		
(試料+蒸留水+と	\mathcal{L}^2 クノメーター)の質量 $m_{ ext{ iny B}}$ g	136. 563	135. 031	133. 559	134. 153	131. 191	129. 544		
mをはかったと	きの内容物の温度 T $^{\circ}$ C	24. 0	24. 0	24. 0	24. 5	24. 5	24. 5		
<i>T</i> ℃における素	蒸留水の密度 ρω(T)g/cm³	0. 99730	0. 99730	0. 99730	0. 99717	0. 99717	0.99717		
温度T℃の蒸留水を (蒸留水+ピクノ	を満たしたときの 1) ソメーター) 質量 が a g	123.846	124. 564	120. 303	123. 104	119. 117	118.992		
	容 器 No.	A34	A35	A36	A151	A152	A153		
試料の	(炉乾燥試料+容器)質量g	86. 623	83. 204	87. 203	82. 161	85. 763	83. 142		
炉乾燥質量	容器質量g	66. 304	66. 434	65. 969	64. 327	66. 255	66.078		
	$m_{ m s}$ g	20. 319	16. 770	21. 234	17.834	19. 508	17.064		
土 粒 子	の 密 度 $ ho_{ m s}$ g/cm 3	2. 666	2. 653	2. 654	2. 621	2.617	2.613		
平均	値 $ ho_{ m s}$ g/cm 3		2.658			2.617			
試 料 番	号 (深 さ)								
ピクノメ	- タ - No.								
(試料+蒸留水+と	\mathcal{L}^2 クノメーター)の質量 $m_{ ext{ iny b}}$ g								
mをはかったと	きの内容物の温度 T $^{\circ}$ C								
T C における素	蒸留水の密度 ρω(T)g/cm³								
温度T℃の蒸留水を (蒸留水+ピクノ	を満たしたときの 1) ,メーター)質量 加 。g								
	容 器 No.								
試 料 の	(炉乾燥試料+容器)質量g								
炉乾燥質量	容器質量g								
	m s g								
土 粒 子	の 密 度 $ ho_{ m s}$ g/cm 3								
平均	値 $ ho_{ m s}$ g/cm $^{ m 3}$								
試 料 番	号 (深 さ)								
ピクノメ	ー タ ー No.								
(試料+蒸留水+と	\mathcal{L}^2 クノメーター)の質量 $m_{ ext{ iny B}}$ g								
m をはかったと	きの内容物の温度 T $^{\circ}$ C								
<i>T</i> ℃における素	蒸留水の密度 ρω(T)g/cm³								
温度7℃の蒸留水を (蒸留水+ピクノ	を満たしたときの 1) ソメーター)質量 加 ªg								
	容 器 No.								
試料の	(炉乾燥試料+容器)質量g								
炉乾燥質量	容器質量g								
	$m_{ m s}$ g								
土 粒 子	の 密 度 $ ho_{ m s}$ g/cm 3								
平均	値 ρ _s g/cm³								
41									

特記事項

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$$

土 粒 子 の 密 度 試 験 (測定)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 20日

試 験 者 石原 聖子

				D _T (
試 料 番	号 (深 さ)	7-P5 (5.15	$5\sim$ 5.60m)		7-P6 (6.20∼6.45m)				
ピクノメ	- タ - No.	148	149	150	151	152	153		
(試料+蒸留水+と	ピクノメーター)の質量 m ь g	131. 570	131. 171	135. 964	137. 895	132. 258	132. 831		
mをはかったと	きの内容物の温度 T $^{\circ}$ C	24. 0	24. 0	24. 0	24. 0	24. 0	24. 0		
<i>T</i> ℃における素	蒸留水の密度 ρω(T)g/cm³	0. 99730	0. 99730	0. 99730	0. 99730	0. 99730	0. 99730		
温度T℃の蒸留水を (蒸留水+ピクノ	を満たしたときの 1) ソメーター) 質量 m ag	117. 762	118. 497	121. 023	123. 112	119. 124	118. 999		
	容 器 No.	A148	A149	A150	A151	A152	A153		
試 料 の	(炉乾燥試料+容器)質量g	88. 968	86. 768	90. 363	88.000	87. 268	88. 219		
炉乾燥質量	容器質量g	66. 940	66. 553	66. 527	64. 327	66. 255	66. 078		
	$m_{\scriptscriptstyle \mathrm{S}}$ g	22. 028	20. 215	23. 836	23. 673	21. 013	22. 141		
土 粒 子	の密度 ρ _s g/cm³	2. 673	2. 673	2. 672	2. 656	2.660	2. 658		
平均	値 ρ _s g/cm³		2. 673			2.658			
試 料 番	号(深 さ)								
ピクノメ	ー タ ー No.								
(試料+蒸留水+と	ピクノメーター)の質量 $m_{ ext{ iny b}}$ g								
m をはかったと	きの内容物の温度 T $^{\circ}$ C								
<i>T</i> ℃における素	蒸留水の密度 ρω(T)g/cm³								
温度T℃の蒸留水を (蒸留水+ピクノ	を満たしたときの ¹⁾ バメーター)質量 m 。g								
	容 器 No.								
試料の	(炉乾燥試料+容器)質量g								
炉乾燥質量	容器質量g								
	m s g								
土 粒 子	の 密 度 $ ho_{\rm s}$ g/cm 3								
平均	値 $ ho_{ m s}$ g/cm $^{ m s}$								
試 料 番	号 (深 さ)								
ピクノメ	- タ - No.								
(試料+蒸留水+と	ピクノメーター)の質量 $m_{ ext{ iny b}}$ g								
mをはかったと	きの内容物の温度 T $^{\circ}$ C								
<i>T</i> ℃における素	蒸留水の密度 $\rho_w(T)$ g/cm 3								
温度T℃の蒸留水を (蒸留水+ピクノ	を満たしたときの 1) ソメーター)質量 加 ª g								
	容 器 No.								
試料の	(炉乾燥試料+容器)質量g								
炉乾燥質量	容器質量g								
	$m_{ m s}$ g								
土 粒 子	の 密 度 $ ho_{ m s}$ g/cm 3								
平均	値 ρ _s g/cm³								
41					•				

特記事項

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$$

JIS A 1203 J G S 0 1 2 1

土の含水比試験

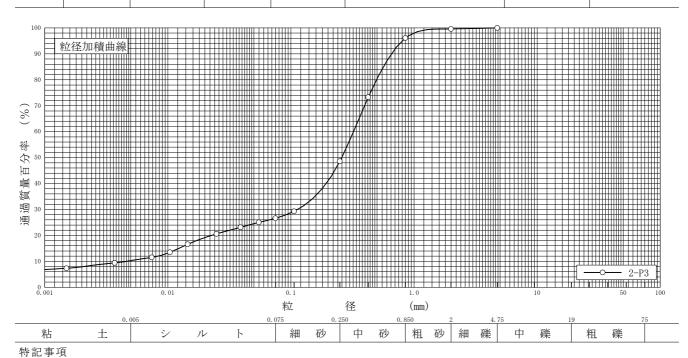
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 10日

試 験 者 石原 聖子

試料番号 (深さ)	7-T3 (3.20∼3	3.70m)		7-S4 (3.90~	~4.90m)	
容器 No.	C37	C38	C39	D42	D57	D71
m_{a} g	92. 60	97. 55	97. 98	463. 31	488. 26	440.80
<i>т</i> ь g	64. 38	68. 27	67. 78	402. 24	420. 18	383. 12
m_{\circ} g	23. 01	23. 54	22. 98	67. 07	67. 61	72. 93
w %	68. 2	65. 5	67. 4	18. 2	19. 3	18. 6
平均值 w %	-	67.0			18. 7	
特記事項						
試料番号 (深さ)						
容器 No.						
m _a g						
<i>т</i> ь g						
<i>m</i> ∘ g						
w %						
平均值 w %	<u> </u>					
特記事項						
試料番号 (深さ)						
容器 No.						
m _a g						
т ь g						
m_{\circ} g						
w %						
平均值 w %						
特記事項						
				T.		
試料番号 (深さ)						
容器 No.						
<i>m</i> a g						
<i>т</i> ь g						
<i>m</i> ∘ g						
w %						
平均值 w %						
特記事項						
				T		
試料番号 (深さ)						
容 器 No.					-	
<i>m</i> _a g					-	
т ь g					-	
<i>m</i> ∘ g						
<i>w</i> %						
平均值 w %						
特記事項					344€).	

 $w = \frac{m_{\text{\tiny B}} - m_{\text{\tiny B}}}{m_{\text{\tiny B}} - m_{\text{\tiny C}}} \times 100$ $m_{\text{\tiny B}}$: (試料+容器)質量 $m_{\text{\tiny B}}$: (炉乾燥試料+容器)質量

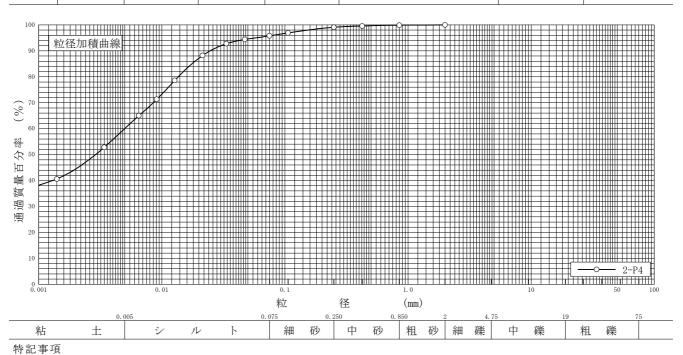

m。: 容器質量

土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

-									д- V	1000	Д	11/1/1 王 1	
試料番号	2-P3						犬	料	番	号		2-P3	
(深 さ)	$(3.15\sim 3.$	45m)				((深			さ)		$(3.15\sim 3.45 \text{m})$	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗		礫	<u>{</u>	分		%	0	<u> </u>
	75		75		中		礫	<u> </u>	分		%	0	
ふ	53		53		細		. 碘	<u> </u>	分		%	0.4	
	37. 5		37. 5		粗		砂	; 	分		%	3.5	
る	26. 5		26. 5		中		砂	; 	分		%	47.5	
2	19		19		細		砂	; 	分		%	22.0	
V)	9. 5		9. 5		シ	/l		<u>۱</u>	分		%	16. 3	
V ·	4. 75	100.0	4. 75		粘		_±		分		%	10.3	
^	2	99.6	2		2mr	n So Z	5 V	通過	質量	百分	率 %	99. 6	
分	0.850	96. 1	0.850		425	5 μ m	ふる	ない通道	過質量	直 百分	率 %	73. 3	
1	0. 425	73. 3	0. 425		75	μm ¾	ふる	い通過	質量	百分	率 %	26.6	
析	0. 250	48.6	0. 250		最	大	÷	粒	径		mm	4.75	
	0. 106	29. 3	0. 106		60	%	, 5	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 3232	
	0.075	26.6	0.075		50	%	, 5	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 2588	
	0.0548	25.0			30	%	,) 	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 1128	
Set-	0.0390	23. 1			10	%	,) 	粒	径	$D_{\scriptscriptstyle 10}$	mm	0.0046	
沈	0.0249	20.6			均	等	Ē	係	数	$U_{\scriptscriptstyle m c}$		70.3	
降	0.0145	16.6			曲		<u> </u>	係	数	$U_{\rm c}'$		8.6	
	0.0104	13. 5			土	粒 -	子	の密	度	ρ _s	g/cm ³	2.632	
分	0.0074	11.5			使	用し	たら	分散剤				ヘキサメタりん酸ナトリウム飽和溶液	
析	0.0037	9.4			溶液	液濃	度,	溶液	添力	量		20%,10ml	
ולד	0.0015	7.3			20	%	,)	粒	径	D_{20}	mm	0. 0227	

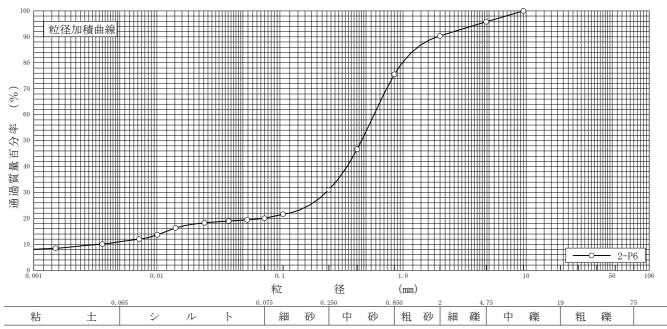


土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

試料番号	2-P4					試	料	番	号		2-P4	
(深 さ)	(4. 15~4.	60m)				(沒	E C		さ)		(4.15~4.60m)	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗			分		%	0	
	75		75		中	碩		分		%	0	
ふ	53		53		細	種		分		%	0	
	37. 5		37. 5		粗	石	少	分		%	0. 1	
る	26. 5		26. 5		中	石	少	分		%	0.8	
2	19		19		細	石	少	分		%	3. 3	
W	9. 5		9. 5		シ	ル	١	分		%	35.8	
٧,	4. 75		4. 75		粘		Ė.	分		%	60. 0	
Λ.	2	100.0	2		2mm	ふるい	/通過	質量	百分	率 %	100.0	
分	0.850	99. 9	0.850		425	μms	るい通	過質量	直百分:	率 %	99. 6	
1	0. 425	99. 6	0. 425		75 μ	um ふる	い通道	過質量	百分	率 %	95. 8	
析	0. 250	99. 1	0. 250		最	大	粒	径		mm	2	
	0. 106	96. 9	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0.0050	
	0. 075	95.8	0. 075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0.0029	
	0.0472	94. 4			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	_	
Set-	0. 0335	92.8			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm		
沈	0.0214	88. 2			均	等	係	数	$U_{\scriptscriptstyle m c}$		_	
降	0.0127	78.6			曲	率	係	数	$U_{\rm c}'$		_	
	0.0091	71. 3			土;	粒子	の密	度	$ ho_{ extsf{s}}$	$\rm g/cm^3$	2. 688	
分	0.0065	65. 0			使用	した	分散剤]			ヘキサメタリん酸ナトリウム飽和溶液	
析	0.0034	52.8			溶液	凌濃度	,溶液	添加	量		20%,10ml	
1771	0.0014	40.6			20	%	粒	径	D_{20}	mm	_	

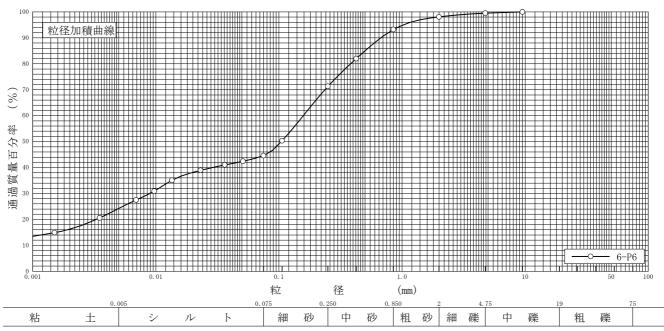


土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

試料番号	2-P6					弒	料	番	号		2-P6	
(深 さ)	(6. 15∼6.	45m)				(沒	22		さ)		(6. 15∼6. 45m)	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗			分		%	0	
	75		75		中	0	終 	分		%	4.2	
ふ	53		53		細	0	終 	分		%	5. 4	
	37. 5		37. 5		粗	石	少	分		%	14.9	
る	26. 5		26. 5		中	石	少	分		%	44.5	
2	19		19		細	石	少	分		%	11.0	
W	9. 5	100.0	9. 5		シ	ル	<u>۱</u>	分		%	9.0	
V .	4. 75	95.8	4. 75		粘	=	Ŀ	分		%	11.0	
	2	90.4	2		2mm	ふるい	/通過	質量	百分	率 %	90. 4	
分	0.850	75. 5	0.850		425	μms	るい通	過質量	直百分:	率 %	46. 7	
I.S.	0. 425	46. 7	0. 425		75 μ	u m ふる	い通道	過質量	百分	率 %	20.0	
析	0. 250	31.0	0. 250		最	大	粒	径		mm	9.5	
	0. 106	21.6	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0.5814	
	0. 075	20.0	0. 075		50	%	粒	径	$D_{\scriptscriptstyle{50}}$	mm	0.4617	
	0.0542	19. 4			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 2377	
set-	0.0384	19.0			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm	0.0034	
沈	0.0244	18. 3			均	等	係	数	$U_{\scriptscriptstyle m c}$		171	
降	0.0142	16. 3			曲	率	係	数	$U_{\rm c}'$		29	
	0.0101	13. 7			土;	粒子	の密	度	ρ _s	g/cm^3	2.651	
分	0.0072	12.0			使用	した	分散剤	IJ			ヘキサメタリん酸ナトリウム飽和溶液	
析	0.0036	10. 1			溶液	凌濃度	,溶液	逐添加	量		20%, 10ml	
171	0.0015	8. 5			20	%	粒	径	D_{20}	mm	0. 0750	

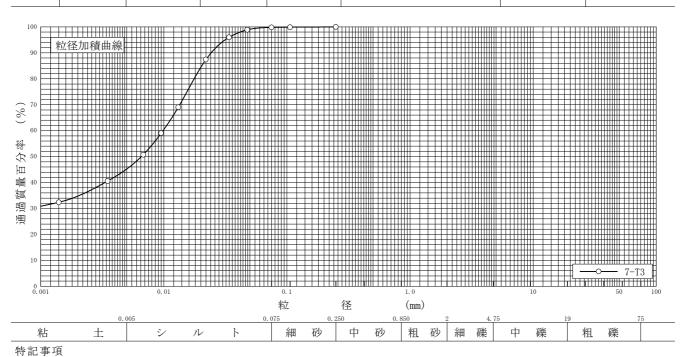


土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

試料番号	6-P6					試	料	番	号		6-P6	
(深 さ)	(6. 15∼6.	45m)				(沒	22		さ)		(6. 15~6. 45m)	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗	0		分		%	0	
	75		75		中	6	終 	分		%	0.5	
ふ	53		53		細		終 	分		%	1.4	
	37. 5		37. 5		粗	石	少 	分		%	4.9	
る	26. 5		26. 5		中	石	少	分		%	21.9	
Δ	19		19		細	石	少 	分		%	26. 7	
W	9. 5	100.0	9. 5		シ	ル	<u></u> }	分		%	20.4	
V .	4. 75	99. 5	4. 75		粘		Ŀ	分		%	24. 2	
^	2	98. 1	2		2mm	ふるい	`通過	質量	百分	率 %	98. 1	
分	0.850	93. 2	0.850		425	μms	るい通	過質量	直百分	率 %	82.0	
I.F.	0. 425	82.0	0. 425		75 μ	mふる	い通道	過質量	百分	率 %	44. 6	
析	0. 250	71. 3	0. 250		最	大	粒	径		mm	9. 5	
	0. 106	50. 3	0. 106		60	%	粒	径	D_{60}	mm	0. 1583	
	0.075	44. 6	0.075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 1046	
	0.0511	42.4			30	%	粒	径	D_{30}	mm	0.0089	
沈	0. 0363	41.0			10	%	粒	径	D_{10}	mm		
₹/L	0.0231	38. 9			均	等	係	数	$U_{\scriptscriptstyle m c}$			
降	0.0135	35. 1			曲	率	係	数	$U_{\rm c}'$		_	
	0.0097	30. 9			土 ‡	粒子	の密	度	ρ _s	g/cm ³	2.648	
分	0.0069	27. 5			使用	した	分散剤	IJ			ヘキサメタリん酸ナトリウム飽和溶液	
析	0.0035	20.6			溶液	凌濃度	,溶液	逐添加	量		20%,10ml	
7/1	0.0015	14. 9			20	%	粒	径	D_{20}	mm	0.0033	

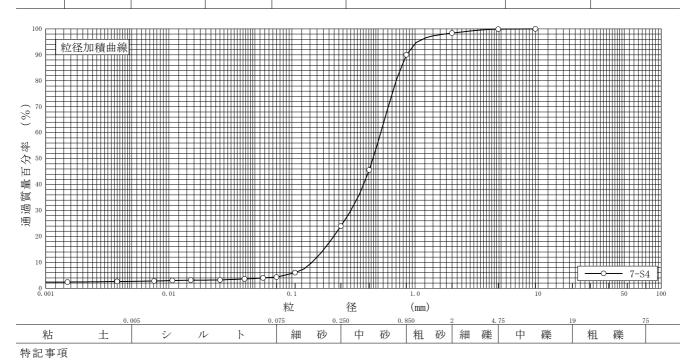

特記事項

土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

試料番号	7-T3					試	料	番	号		7-T3	
(深 さ)	(3. 20∼3.	70m)				(沒	Ë		さ)		(3.20∼3.70m)	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗	6	樂	分		%	0	
	75		75		中	通		分		%	0	
Š	53		53		細	· · · · · · · · · · · · · · · · · · ·	 ※	分		%	0	
	37. 5		37. 5		粗	石	少	分		%	0	
る	26. 5		26. 5		中	石	少	分		%	0	
•	19		19		細	石	少 	分		%	0.2	
W	9. 5		9. 5		シ	ル	١,	分		%	54.6	
V.	4. 75		4. 75		粘		Ŀ 	分		%	45. 2	
\wedge	2		2		2mm	ふるい	通過	質量	百分	率 %	100.0	
分	0.850		0.850		425	μms	るい通	過質量	量百分	率 %	100.0	
11-	0. 425		0. 425		75 μ	ιmふる	い通道	過質量	百分	率 %	99.8	
析	0. 250	100.0	0. 250		最	大	粒	径		mm	0. 250	
	0. 106	99. 9	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0.0098	
	0. 075	99.8	0. 075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0.0066	
	0.0476	98. 9			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	_	
沈	0.0339	96. 0			10	%	粒	径	D_{10}	mm	_	
1/L	0.0219	87. 4			均	等	係	数	$U_{\rm c}$			
降	0.0131	69. 0			曲	率	係	数	U_{c}'			
	0.0095	59. 0			土:	粒子	の密	度	ρ _s	g/cm ³	2.658	
分	0.0068	50. 7			使月	目した	分散剤	J			ヘキサメタりん酸ナトリウム飽和溶液	
析	0.0035	40.6			溶液	友濃度	,溶液	添加	量		20%,10ml	
ועי	0.0014	32. 4			20	%	粒	径	D_{20}	mm		

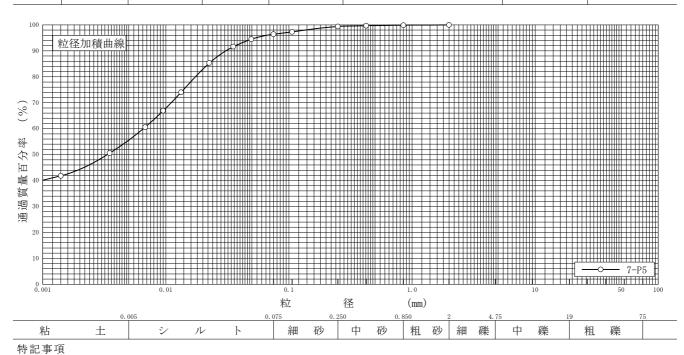


土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

試料番号	7-S4					Ī	試	料	番	号		7-S4	
(深 さ)	(3.90~4.	90m)		·			(深			さ)		(3.90~4.90m)	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗		礴	<u>{</u>	分		%	0	
	75		75		中		礴	<u> </u>	分		%	0. 1	
ふ	53		53		細		礴	<u>{</u>	分		%	1. 5	
	37. 5		37. 5		粗		矽)	分		%	8. 4	
る	26. 5		26. 5		中		矽	>	分		%	66. 0	
۵	19		19		細		砂	>	分		%	19. 7	
V	9. 5	100.0	9. 5		シ	<i>j</i>	レ	<u>۲</u>	分		%	1.6	
V.	4. 75	99. 9	4. 75		粘		±	:	分		%	2. 7	
Λ	2	98. 4	2		2mm	n &	るレ	通過	質量	百分	率 %	98. 4	
分	0.850	90.0	0.850		425	5μm	ı Šə	るい通道	過質	量百分	率 %	45. 6	
15	0. 425	45.6	0. 425		75	μ m -	ふる	い通道	過質量	直百分	率 %	4. 3	
析	0. 250	24. 0	0. 250		最		۲.	粒	径		mm	9. 5	
	0. 106	6.0	0. 106		60	9	6	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 5282	
	0. 075	4.3	0. 075		50	9	6	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 4558	
	0.0583	4.0			30	9	6	粒	径	$D_{\scriptscriptstyle 30}$	mm	0.3012	
沈	0.0413	3.6			10	9	6	粒	径	D_{10}	mm	0. 1456	
<i>(</i> /L	0.0261	3. 2			均	<u></u>		係	数	$U_{\rm c}$		3.63	
降	0.0151	3. 1			曲	2	赵	係	数	$U_{\rm c}'$		1.2	
	0.0107	3.0			土	粒	子	の密	度	$ ho_{ m s}$	g/cm^3	2.617	
分	0.0076	2.8			使	用し	た	分散剤	J			ヘキサメタリん酸ナトリウム飽和溶液	
析	0.0038	2.6			溶液	液濃	度,	溶液	添力	量		20%,10ml	
171	0.0015	2. 4			20	9	6	粒	径	D_{20}	mm	0. 2188	

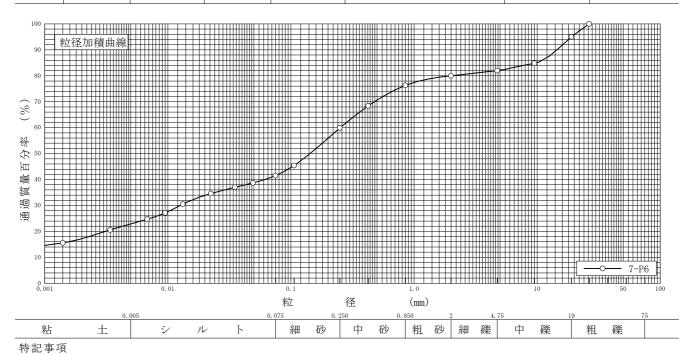


土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

試料番号	7-P5					試	料	番	号		7-P5	
(深 さ)	(5. 15∼5.	60m)				(沒	Ë		さ)		(5.15~5.60m)	
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗	確		分		%	0	
	75		75		中		樂	分		%	0	
Š	53		53		細	確	 樂	分		%	0	
	37. 5		37. 5		粗	石	· 少	分		%	0. 1	
る	26. 5		26. 5		中	石	少	分		%	0.5	
.2	19		19		細	石	少	分		%	3. 0	
W	9. 5		9. 5		シ	ル	<u>۱</u>	分		%	40.8	
٧,	4. 75		4. 75		粘	=	E.	分		%	55. 6	
	2	100.0	2		2mm	ふるい	・通過	質量	百分	率 %	100.0	
分	0.850	99. 9	0.850		425	μms	るい通	過質量	 直百分	率 %	99. 7	
	0. 425	99. 7	0. 425		75 μ	u m ふる	i	 過質量	百分	率 %	96. 4	
析	0. 250	99. 4	0. 250		最	大	粒	径		mm	2	
	0. 106	97. 3	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0.0066	
	0. 075	96. 4	0. 075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0.0033	
	0.0496	94. 5			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	_	
Nels	0. 0353	91. 6			10	%	粒	径	$D_{{}_{10}}$	mm	_	
沈	0.0225	85. 3			均	等	係	数	$U_{\scriptscriptstyle m c}$		_	
降	0.0133	74. 0			曲	率	係	数	$U_{\rm c}'$		_	
	0.0095	66. 9			土;	粒 子	の密	度	$ ho_{ ext{s}}$	$\rm g/cm^3$	2. 673	
分	0.0068	60.6			使用	した	 分散剤]			ヘキサメタリん酸ナトリウム飽和溶液	
析	0.0035	50.6			溶液	 凌濃度	,溶液	添加	量		20%, 10ml	
771	0.0014	41.8			20	%	粒	径	D_{20}	mm	_	



土 の 粒 度 試 験 (粒径加積曲線)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試 験 者 石原 聖子

								н ,			P/// 1	
試料番号	7-P6					試	料	番	号		7-P6	
(深 さ)	$(6.20\sim 6.$	45m)				()	花		さ)		(6. 20~6. 45m)	
,	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗		樂	分		%	5. 0	
	75		75		中	- T	樂	分		%	13. 0	
ふ	53		53		細		樂 	分		%	2.0	
	37. 5		37. 5		粗	₹	沙	分		%	3. 7	
る	26. 5	100.0	26. 5		中	· · · · · · · · · · · · · · · · · · ·	沙	分		%	16. 4	
a)	19	95. 0	19		細	· · · · · · · · · · · · · · · · · · ·	沙	分_		%	18.4	
V	9. 5	84.8	9. 5		シ	ル	١	分		%	18.6	
V ·	4. 75	82. 0	4. 75		粘	-	±	分		%	22. 9	
^	2	80.0	2		2mm	ふるい	/通過	質量	百分	率 %	80.0	
分	0.850	76. 3	0.850		425	μms	るい通	過質量	量百分	率 %	68. 4	
15	0. 425	68.4	0. 425		75 μ	m & ð	るい通i	過質量	直百分	率 %	41. 5	
析	0. 250	59. 9	0. 250		最	大	粒	径		mm	26. 5	
	0. 106	45. 4	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	0. 2515	
	0.075	41.5	0.075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 1433	
	0.0492	38. 7			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0.0126	
Set-	0.0351	37.0			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm		
沈	0.0224	34.6			均	等	係	数	$U_{\rm c}$		_	
降	0.0132	30.5			曲	率	係	数	$U_{\rm c}'$		_	
	0.0095	27. 1			土丬	粒子	の密	度	$ ho_{ ext{s}}$	$\rm g/cm^3$	2.658	
分	0.0068	24. 7			使用	した	分散剤	IJ			ヘキサメタりん酸ナトリウム飽和溶液	
析	0.0034	20.6			溶液	凌濃度	,溶液	支添力	量		20%,10ml	
171	0.0014	15.6			20	%	粒	径	$D_{\scriptscriptstyle 20}$	mm	0.0031	

土の液性限界・塑性限界試験(試験結果)

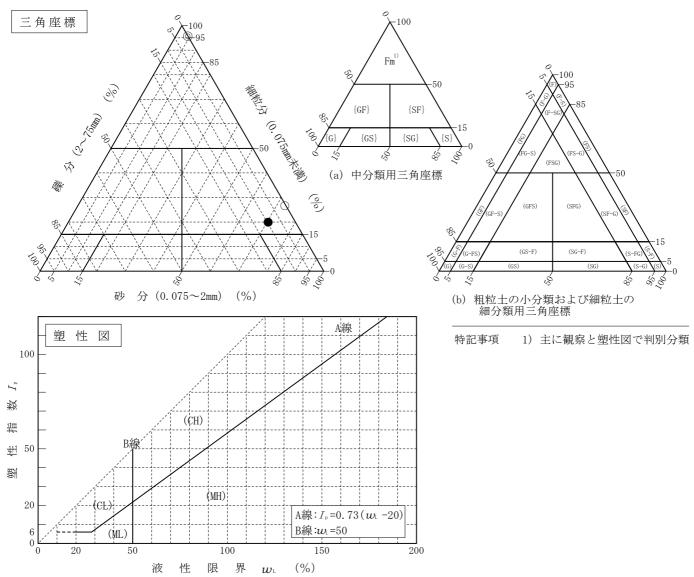
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 11日

試 験 者 石原 聖子

					武	灰 右	- 白原	・聖	十	
試料番号	(深さ) 7-T3	$(3.20\sim 3.70 \text{m})$			5	落 10	下 1		回数 20253	30 40
液	性限界試験	塑性限界試験	液性限界 🐠 %						20 25	流動曲線
落下回数	含水比 w %	含水比 w %	62. 4	67	,					100000
40	60. 9	35. 2	塑性限界 🐠 %	01						
27	62.0	34.8	34. 7	65	5	· ·				
22	62.6	34.0	塑性指数 I,							
18	63. 4		27. 7	63	62.4 %					
14	64. 7								•	
11	65. 4			61						
試料番号	(深さ)			59	If	= 8.3				
液体	性限界試験	塑性限界試験	液性限界 w %	0.0						
落下回数	含水比 w %	含水比 w %								
			塑性限界 w, %							
			塑性指数 I,							
				<u></u>						
				(%)						
				ω						
試料番号	(深さ)			~						
液 液	性限界試験	塑性限界試験	液性限界 🐠 %	丑						
落下回数	含水比 w %	含水比 w %								
			塑性限界 w。%	¥						
			塑性指数 I,	∮ □						
試料番号	(深さ)									
	 性限界試験	塑性限界試験	液性限界 🐠 %							
落下回数	I		INITIASI WE 70							
福工四級	B N N W /0	日水丸 w /0	塑性限界 🐠 %							
			至正成外 W _p /0							
			₩₽.₩.₩. <i>T</i>							
			塑性指数 I,							
	Í	1						+		

地盤材料の工学的分類


調査件名 知多市新庁舎等設計委託に伴う地盤調査

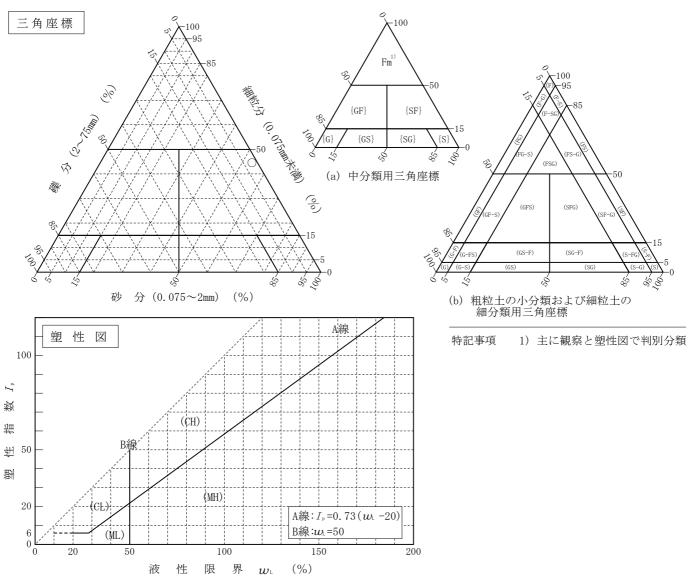
試験年月日

2023年 7月 24日

試	験	老	石原	聖子

	試	料	番	号		2-P3	2-P4	2-P6		
	(深	さ)		$(3.15\sim 3.45 \text{m})$	(4.15~4.60m)	$(6.15\sim6.45\text{m})$		
石	分	(75mn	以上)	%					
礫	分	(2~7	'5mm)		%	0.4	0.0	9. 6		
砂	分	(0.07	′5∼2	mm)	%	73. 0	4. 2	70. 4		
細米	立分	(0.07	′5mm∋	卡満)	%	26. 6	95.8	20. 0		
シル	ト分	(0.00)5~0	. 075m	m)%	16. 3	35. 8	9. 0		
粘 :	上分	(0.00	5mm	 卡満)	%	10. 3	60.0	11. 0		
最	大	粒	径		mm	4. 75	2	9. 5		
均	等	係	数	$U_{\rm c}$		70. 3	_	171		
液	性	限	界	wL	%					
塑	性	限	界	$w_{\scriptscriptstyle extstyle p}$	%					
塑	性	指	数	$I_{\scriptscriptstyle \mathrm{p}}$						
Lula rich	. J. J. JOI	~ \\ \	Ner: A			細粒分質砂	細粒土	礫まじり		
地盤	材料	の分	類名					細粒分質砂		
分	類	記	号			(SF)	(F)	(SF-G)		
凡	例	記	号			0	©	•		
							·	·	·	

地盤材料の工学的分類


調査件名 知多市新庁舎等設計委託に伴う地盤調査

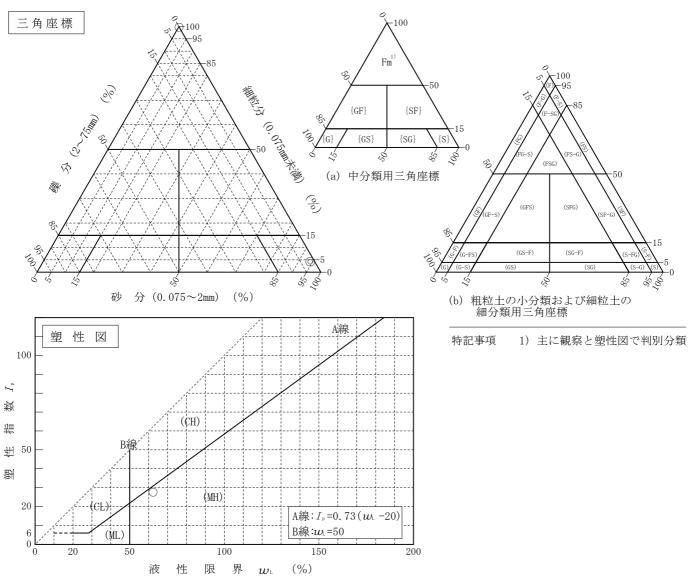
試験年月日

2023年 7月 24日

試	胚仝		石原	面フ
試	馬史	石	1 1 1 1 1 1 1 1 1 1 1 1	型十

	試	料	番	号		6-P6			
	(深	さ)		$(6.15\sim 6.45 \text{m})$			
石	分	(75mm	以上)	%				
礫	分	(2~7	'5mm)		%	1.9			
砂	分	(0.07	′5∼2	mm)	%	53. 5			
細米	並 分	(0.07	′5mm∋	 卡満)	%	44. 6			
シル	ト分	(0.00)5~0	. 075m	m)%	20. 4			
粘 :	土 分	(0.00	5mm	卡満)	%	24. 2			
最	大	粒	径		mm	9. 5			
均	等	係	数	$U_{\rm c}$		_			
液	性	限	界	wL	%				
塑	性	限	界	$w_{\scriptscriptstyle extstyle p}$	%			 	
塑	性	指	数	$I_{\scriptscriptstyle \mathrm{p}}$					
Life An	t. I. I. dol	- ()				細粒分質砂			
地盤	材料	·の分	類名						
分	類	記	号			(SF)			
凡	例	記	号			0			
						·	·		

地盤材料の工学的分類

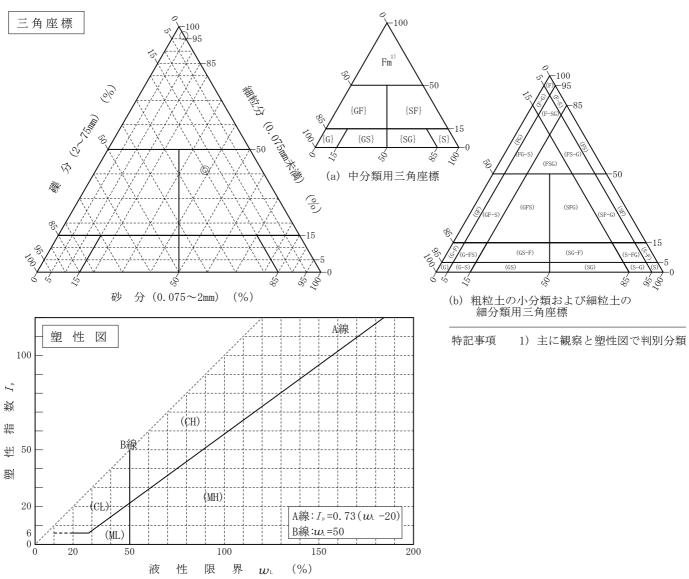

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日

2023年 7月 20日

試	E		石原	ᄪ
試	岛中	石	有規	型十

	試	料	番	号		7-T3	7-S4		
	(深	さ)		$(3.20\sim 3.70 \text{m})$	(3.90∼4.90m)		
石	分	(75mm	以上	.)	%				
礫	分	(2~7	'5mm)		%	0.0	1. 6		
砂	分	(0.07)	'5∼2	mm)	%	0. 2	94. 1		
細米	立分	(0.07	5mm∋	 卡満)	%	99.8	4. 3		
シル	ト分	(0.00	5~0	. 075m	m)%	54. 6	1.6		
粘 :	上分	(0.00	5mm=	卡満)	%	45. 2	2. 7		
最	大	粒	径		mm	0. 250	9. 5		
均	等	係	数	U_{c}		_	3. 63		
液	性	限	界	wL	%	62. 4			
塑	性	限	界	$w_{\scriptscriptstyle extstyle p}$	%	34. 7			
塑	性	指	数	$I_{\scriptscriptstyle m p}$		27. 7			
1.1 48	Lital	- 63.3	ir t			シルト	分級された砂		
地盤	材料	の分	類名			(高液性限界)			
分	類	記	号			(MH)	(SP)		
凡	例	記	号			0	©		


調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日

2023年 7月 24日

試	胚仝		石原	面フ
試	馬史	石	1 1 1 1 1 1 1 1 1 1 1 1	型十

	試	料	番	号		7-P5	7-P6			
	(深	さ)		$(5.15\sim5.60m)$	(6.20∼6.45m)			
石	分	(75mm	以上)	%					
礫	分	(2~7	'5mm)		%	0.0	20.0			
砂	分	(0.07)	′5~2	mm)	%	3. 6	38. 5		 	
細米	立分	(0.07	′5mm∄	 ト満)	%	96. 4	41. 5		 	
シル	ト分	(0.00	5~0	. 075m	m)%	40.8	18. 6			
粘 :	上分	(0.00	5mm∄	 	%	55. 6	22. 9		 	
最	大	粒	径		mm	2	26. 5		 	
均	等	係	数	$U_{\rm c}$			_		 	
液	性	限	界	wL	%					
塑	性	限	界	$w_{\scriptscriptstyle extsf{p}}$	%				 	
塑	性	指	数	I_{p}					 	
						細粒土	細粒分質			
地盤	材料	の分	類名				礫質砂			
分	類	記	号			(F)	(SFG)			
凡	例	記	号			0	©		 	

土の湿潤密度試験(ノギス法)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 6日

平均值 $S_{\rm r}$

%

100.1

1.735

	番号				~3.70m)	0		者 池田 謙信	
共 	試		No.		1	2	3		
共 記	(体 0	り質量	m	g	310.80	123. 60	125. 22		
444-		上	部	cm	5. 031	3. 474	3. 492		
供	直				5. 028	3. 481	3. 496		
		中	部	cm	5. 051	3. 480	3. 482		
試					5. 047	3. 478	3. 499		
		 	下部		5. 078	3. 490	3.500		
体	径	_ '	ч	cm	5. 062	3. 493	3. 507		
		平	均值	D cm	5. 050	3. 483	3. 496		
体	高				9. 992	7. 920	7. 954		
	1.4			cm	9. 994	7. 916	7. 960		
積	さ	平	均値	H cm	9. 993	7. 918	7. 957		
	体	積 V =	= (π D ² /	4) H cm ³	200. 16	75. 44	76. 38		
		容	器	No.	T301	T354	T355		
			<i>m</i> a	g	382.65	194. 61	197. 25		
含			<i>т</i> ь	g	249. 24	147. 59	150. 55		
			т _с	g	71. 85	71.01	72. 03		
			w	%	75. 2	61. 4	59. 5		
水		容	器	No.					
			m a	g		-			
			<i>т</i> ь	g		-			
ماد			 т.	g		-		-	
比			w	%					
		平均		w %	75. 2	61.4	59. 5		
显潤		$\rho_{\rm t} = m /$		g/cm ³	1. 553	1. 638	1.639		
				00) g/cm ³	0.886	1. 015	1. 028		
			$/\rho_{\rm d})-1$		2.000	1. 619	1. 586		
	见和度 $S_r = w \rho_s/(e \rho_w)$ %				99. 9	100.8	99. 7		
	粒子の密度 ρ_s g/cm ³				2. 658	平均值 w %	65. 4	平均値 ρ _t g/cm³	1.610
二 个丛	. 1 0)	近皮 β) s	g/ Cill	2.000	一切 IE W 70	00.4	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	1.010

0.976

 ${\rm g}/{\rm cm}^{\scriptscriptstyle 3}$

平 均 値 e

特記事項

均

値 ρ_d

土の湿潤密度試験(ノギス法)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

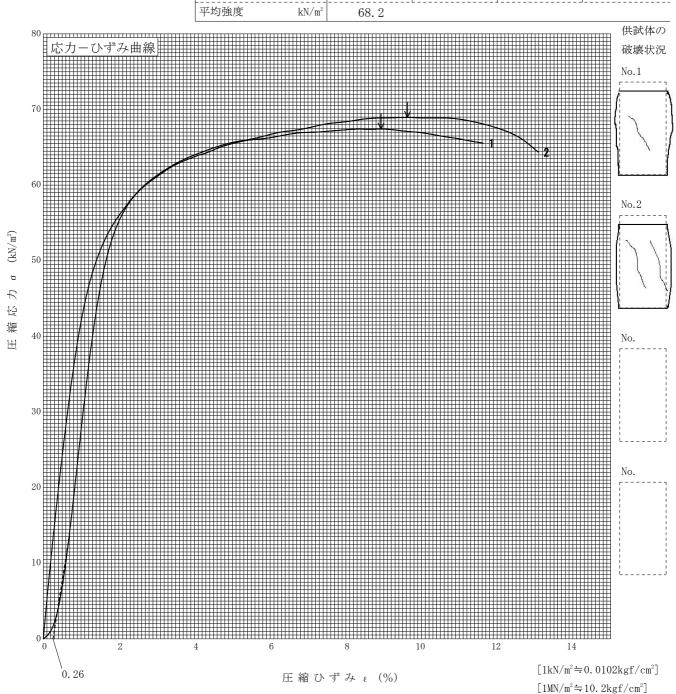
試験年月日 2023年 7月 12日

式料	番号	(深さ	s) 7-	-S4 (3. 90	~4.90m)		試験	者 池田 謙信	
供	試	体	No.			1	2	3	4	
供試	体体	の質量	m		g	362.99	345. 87	349. 36	341.82	
			4	7		5. 045	5. 018	5. 002	5. 043	
供	直	上	音	1)	cm	5. 047	5. 020	5. 001	5. 036	
		-	*	7		5. 026	5. 002	4. 996	5. 041	
試		中	许	1)	cm	5. 017	5. 000	4. 982	5. 038	
			. ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ			5. 002	5. 002	5. 002	5. 030	
体	径	下	许	ß	cm	5. 007	4. 997	5. 001	5. 028	
		平	均值	i D	cm	5. 024	5. 007	4. 997	5. 036	
体	高					10. 202	10. 090	10. 143	10. 048	
	le1				cm	10. 201	10. 093	10. 144	10. 046	
積	さ	平	均值	I H	cm	10. 202	10. 092	10. 144	10. 047	
1,54	体	積 V =	$= (\pi D^2)$	/4) H	cm ³	202. 24	198.71	198. 94	200. 12	
		容	器	No		T305	T306	T307	T308	
			<i>m</i> a		g	434. 79	417. 94	420.69	413. 90	
含			m _b		g	346.04	325. 65	347. 03	363. 53	
			m_{\circ}		g	71.80	72. 07	71. 33	72. 08	
			w		%	32. 4	36. 4	26. 7	17. 3	
水		容	器	No						
			$m_{\scriptscriptstyle \mathrm{a}}$		g					
			mь		g					
比			m_{\circ}		g					
			w		%					
		平	均值	ī w	%	32. 4	36. 4	26. 7	17. 3	
湿潤	密度	$\rho_{\mathrm{t}} = m$	/V	8	g/cm ³	1. 795	1. 741	1. 756	1. 708	
 乾燥	密度	$\rho_{\rm d} = \rho_{\rm t}$	/(1+ <i>w</i> /	100) g	g/cm ³	1. 356	1. 276	1. 386	1. 456	
 間 隙)隙 比 $e = (\rho_s/\rho_d) - 1$					0. 930	1. 051	0.888	0. 797	
 飽 和	卫和度 $S_r = w \rho_s/(e \rho_w)$ %					91. 2	90. 6	78. 7	56. 8	
土粒	上粒子の密度 ρ _s g/cm³					2. 617	平均值 w %	28. 2	平均値 ρ _t g/cm³	1. 750
平	均	値	0 d	{	g/cm ³	1. 369	平 均 値 e	0. 917	平均値 S _r %	79. 3

特記事項

JΙS	Α	1216
JGS		0511

土の一軸圧縮試験(強度・変形特性)


調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 10日

試料番号	(3がよ)	7 70	10	000	70 \
37 47 25 22	1 1/2 = - 1	7-13	(''\	$200 \sim 3$	/(lm)

試 験 者 大橋 翔

土質名称	シルト(高液性限界)(MH)	供 試	体 No	0.	1	2	
液性限界 w L ¹⁾ %	62. 4	試 料 0	の状	態	乱さない	乱さない	
塑性限界 w ,1) %	34. 7	高さ	H_0	cm	7.918	7. 957	
ひずみ速度 %/min	1.0	直 名	$E D_0$	cm	3. 483	3. 496	
特記事項 1) 必要に応	ぶじて記載する。	質 量	<u> </u>	g	123.60	125. 22	
	$\frac{q_{\rm u}}{2}$ = $\frac{-100}{2}$ /10	湿潤密度	$ \xi vert ho_{ m t}^{ vert} $	g/cm ³	1.638	1. 639	
E_5	$_0 = \frac{2}{\epsilon_{50}}/10$	含水片	Ł w	%	61.4	59. 5	
	C 50	一軸圧縮強る	<u> </u>	kN/m^2	67. 4	69. 0	
		破壊ひずみ	, γ ε _f	%	8. 67	9. 63	
		変形係数	文 E ₅₀ ¹	1) MN/m ²	3.84	4. 55	
		鋭敏片	$\stackrel{-}{arnothing}$	1)			
		平均強度		kN/m^2	68. 2		

JIS A 1217 JGS 0 4 1 1

土の段階載荷による圧密試験(計算書)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 5日

試料番号	(淫な)	7-T3	(3	$20 \sim 3$	70m
	UAR C /	1 10	(0.	40 - 3.	(OIII)

試 験 者 清水 亮太

試験	機 No.			37		直 径	D cm	6. 00	00	初	含水比 w %	78. 5
最低~	~最高室温	$^{\circ}\mathbb{C}$	2	0-20	供	断 面 積	A cm	28. 2	27	期	間隙比 e ₀ , 体積比 f ₀	2.077
土質	名 称		シルト(『	高液性限界)(MH)	4. E	高き	H_0 cm	2.00	00	状	显潤密度 ρ t g/cm³	1. 542
土粒子	予の密度 ρ。	g/cm ³		2.658	試	質 量	<i>m</i> ₀ g	87. 1	19	態	泡和度 Sro %	100. 5
液性	: 限 界 w.	%		62. 4	体	炉乾燥質量	$m_{\rm s}$ g	48.8	48. 84		旨 数 C _c	1. 08
塑性	: 限 界 w _p	%		34. 7		実質高さ	$H_{\rm s}$ cm	0.650	00	圧密降	伏応力 p。kN/m²	130
載荷	圧密圧力 <i>p</i>	圧力堆	曽分 <i>∆ p</i>	圧 密 量	ΔH	供試体高さ Η 🗵		均供試体高さ표	圧縮	ひず	み 体積圧縮係数 m	。 間隙比 e=H/H₅- 1
段階	kN/m^2	k	N/m^2	cm		cm		cm	Δε=ΔΙ	<i>H/H</i> × 100 °	% m ² /kN	<u> 体積比 </u>
0	0.0					2.000						2.077
			10.0	0.00	53			1.998		0. 265	2.65E-4	
1	10.0					1. 995						2. 069
			10.0	0.00	92			1.991		0.462	4. 62E-4	
2	20.0					1. 986						2. 055
			20.0	0.01	48			1.979		0.748	3. 74E-4	
3	40.0					1. 971			ļ			2. 032
			40.0	0.02	68 			1. 958		1. 369	3. 42E-4	
4	80.0					1. 944						1. 991
			80.0	0. 10	35			1.893		5. 468	6.84E-4	
5	160.0					1.841						1.832
		1	60.0	0. 20	39 			1. 739	1	1. 725	7. 33E-4	
6	320.0					1.637						1. 518
		3:	20.0	0. 15	95 			1. 558	1	0. 237	3. 20E-4	
7	640. 0					1. 478						1. 274
		6	40.0	0. 13	40 			1.411		9. 497	1. 48E-4	
8	1280. 0					1. 344						1. 068
		-12	70.0	-0. 11	21 			1. 400	-;	8.007	6. 30E-5	
9	10.0					1. 456						1. 240
10								w = ± =				
	平均圧密圧力p		, ±50	圧密係数		透水係数	$k \mid -$	次圧密量 △ H₁			比補正圧密係数	
段階 — 0+	kN/m²		min	cm²/c		m/s		cm	+	$\frac{\Delta H_1 / \Delta}{2}$		
1	5. 0		. 30	4062. 2		1. 2E-8		0.0006	+	0. 113	459.04	1. 4E-9
2	14. 1		. 33	3667.		1.9E-8		0.0014	+	0. 152	557. 41	2. 9E-9
3 -	28. 3		. 35 	3416. 0		1. 5E-8		0.0045	+	0. 304	1038. 47	4. 4E-9
4	56. 6		. 44	2659. 9		1. 0E-8		0.0058	+	0. 216	574. 55	2. 2E-9
5	113. 1		. 87	1257.		9.8E-9		0.0181	+	0. 175	220.05	1. 7E-9
6	226. 3		. 15	65. 2		5. 4E-10		0. 1532	+	0. 751	49. 00	4. 1E-10
7	452. 5		. 53 	113.4		4. 1E-10		0. 1026	+	0.643	72. 97	2. 7E-10
8 -	905. 1	4.	. 65 	130.		2. 2E-10	J 	0.0827	ļ'	0. 617	80. 65	1. 4E-10
9 -	113. 1											
— 10 ¹	特記事項							77	// 4		= - / /	
	山町ず水							$H_s = m_s$	/ (ρ _s Α)	$\overline{p} = \sqrt{p \cdot p'}$	

 $H_s = m_s / (\rho_s A)$ $H = H' - \Delta H$ $\overline{H} = (H + H')/2$ $m = (\Delta \epsilon/100)/\Delta p$ $S_{r0} = w_0 \rho_s / (e_0 \rho_w)$

 \sqrt{t} 法: c_{v} =305 $\times \overline{H}^2/t_{90}$ - 曲線定規法: c_v=70.9× \overline{H}^2/t_{50}

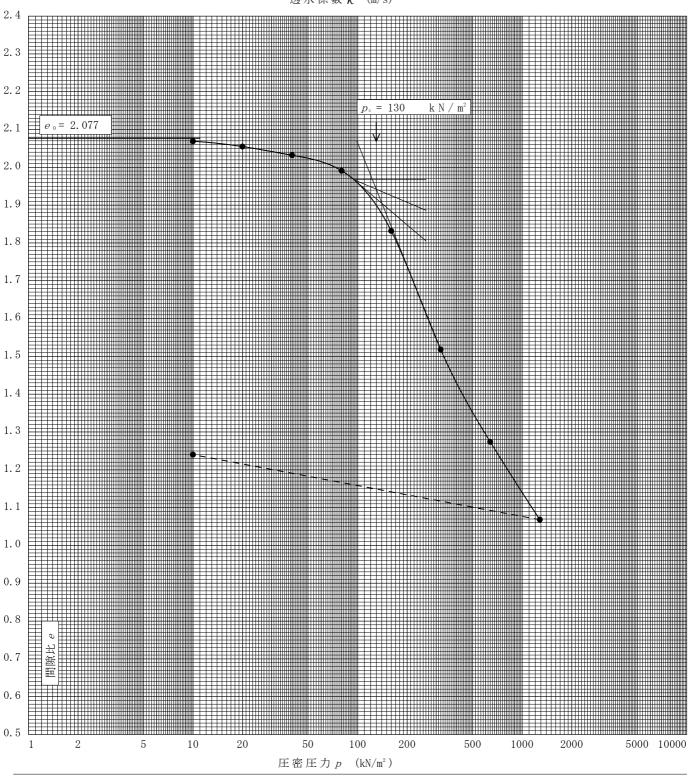
 $k = c_v \, m_v \gamma_w / (8.64 \times 10^8)$ $k' = c'_{\rm v} m_{\rm v} \gamma_w / (8.64 \times 10^8)$ ただし、 $\gamma_w = 9.81 \text{kN/m}^3$

 $[1kN/m^2 = 0.0102kgf/cm^2]$

JIS 1217 JGS 0 4 1 1

土の段階載荷による圧密試験(圧縮曲線)

調 査 件 名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 5日

試料番号(深さ) 7-T3 (3.20~3.70m)

清水 亮太

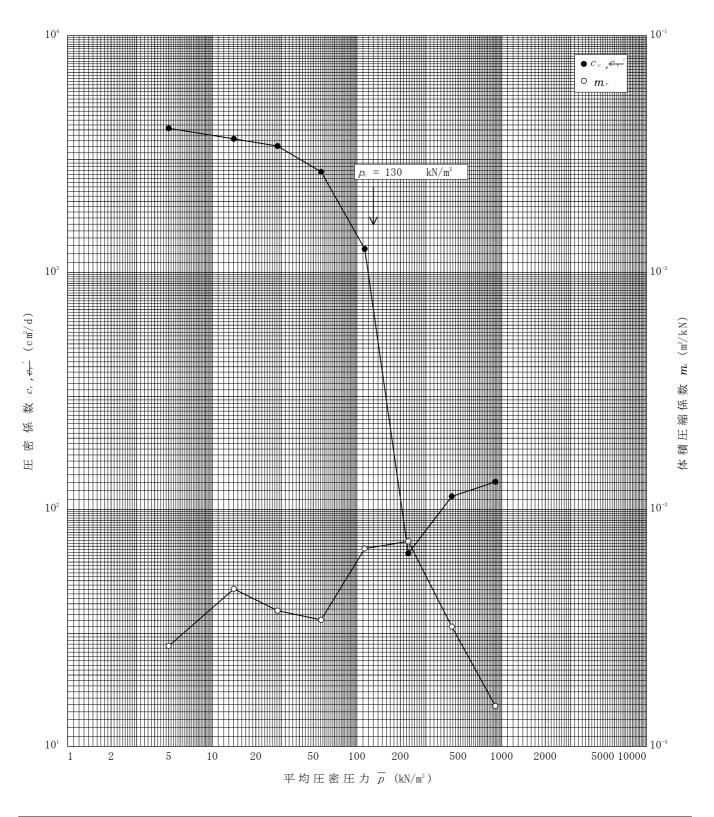
土粒子の密度	液性限界	塑性限界	初期含水比	初期間隙比 e。	圧 縮 指 数	圧密降伏応力	ひずみ速度 1)
$ ho_{\rm s}~{ m g/cm^3}$	w. %	$w_{\scriptscriptstyle extsf{p}}$ %	$w_{\circ}\%$	初期体積比	C .	p₀ kN/m²	%/min
2.658	62. 4	34.7	78. 5	2.077	1.08	130	

特記事項

1) 定ひずみ速度載荷による圧密試験の時のみ記入する。 2) 定ひずみ速度載荷による圧密試験の時のみ使用する。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

JIS A 1217 JGS 0411


土の段階載荷による圧密試験 $(c_v, m_v - \bar{p}]$ 関係)

調 査 件 名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 5日

試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 清水 亮太

土の三軸試験の供試体作製・設置

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 12日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

t	料	の状	の基準を		0	さない)繰返し非排水三軸詩 土 粒 子 の 密 度		9 617
		 体 の 作					工 位 丁 07 名 6	ε ρ _s g/ CIII	2.617
						リミング法 outstand			
	質 供	. 名 —— 試	称 体		が放され	ıた砂(SP)	0	0	4
	一	武	144	No.		1 5 004	2	3	<u>4</u>
	-	直	z.			5. 024	5. 007	4. 997	5. 036
	,	旦 . 15	E		cm				
	平		 径	D_{i}	cm	5. 024	5. 007	4. 997	5. 036
J	<u> </u>	., ,	133	<i>D</i> 1		10. 202	10. 092	10. 144	10. 047
•	-	高	Ž		cm	10.202			10.041
	'		_						
月	平	均高	3	H_{i}	cm	10. 202	10.092	10. 144	10. 047
	体		積	$V_{\rm i}$	cm^3	202. 24	198.71	198. 94	200. 12
Ċ	含	水	比	<i>w</i> i	%	32.4	36. 4	26. 7	17. 3
	質		量	<i>m</i> i	g	362. 99	345. 87	349. 36	341. 82
SE.	湿	潤 密	度	$ ho_{\mathrm{ti}}{}^{3)}$	g/cm ³	1. 795	1. 741	1. 756	1.708
	乾	燥 密	度	$ ho_{\mathrm{di}}{}^{\mathrm{3)}}$	g/cm ³	1. 356	1. 276	1. 386	1. 456
	間	隙	比	$e_{\mathrm{i}}^{$		0. 930	1.051	0.888	0. 797
	飽	和	度	${\cal S}_{{ m ri}}^{~~3)}$	%	91. 2	90.6	78. 7	56.8
	相	対 密	度	$D_{\mathrm{ri}}^{-3)}$	%				
		軸変位	量の測	定方法		外部変位計によ	にって測定		
Ļ	設置	置時の軸変	位量		cm	0.025	-0.008	0.031	-0.005
Ţ	飽和	1過程の軸変	位量		cm	0.005	0.002	0.003	0.001
ij	軸	変 位	量	$\Delta H_{ m i}$ 5)	cm	0.030	-0.006	0.034	-0.004
1		体積変化	匕量の測	則定方法		計算による			
1	設置	時の体積変	化量		cm ³	1.490	-0. 470	1.820	-0.300
1	飽和	過程の体積変	变化量 		cm ³	0. 296	0.118	0. 175	0.060
	体	積 変 化		$\Delta V_{ m i}^{5)}$	cm ³	1. 786	-0.352	1. 995	-0.240
Ē	高		さ	H_0	cm	10. 172	10.098	10. 110	10.051
3	直		径	D_0	cm	5.009	5. 010	4. 980	5. 038
j	体		積	V_0	cm ³	200. 45	199.06	196. 95	200.36
t È	乾	燥 密	度	$\rho_{d0}^{(3)}$	g/cm ³	1. 368	1. 274	1. 400	1. 454
j	間	隙	比	e ₀ 3)		0.913	1. 054	0.869	0.800
_	相	対 密	度	$D_{\rm r0}^{-3)}$	%				
i	容	器	No.			T305	T306	T307	T308
Ź	(炉草	乾燥供試体+容器			g	346. 04	325.65	347. 03	363. 53
梨	容	器 質	量		g	71.80	72.07	71. 33	72. 08
爰	炉	乾燥質	量	m_{s}	g	274. 24	253. 58	275. 70	291.45

特記事項

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。
- 3) 必要に応じて記載する。
- 4) 必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。
- 5) 設置時の変化と飽和過程および B 値測定過程での変化を合わせる。

土の繰返し非排水三軸試験(試験条件・圧密状態)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 12日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

十 7	<u></u>	称	分	級さ	れた砂	(SP)	試料の状態"	乱さない	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	和 方		<i></i>		重負圧		供試体の作製方法 ²	売ごない 凍結トリミング法		
	背	124		 圧	业,	kN/m²	200	土粒子の密度	$\rho_s^{3)}$ g/cm ³	2.617
験	F	変	応		σ _c '	kN/m²	60		ρ _s g/cm	2.017
試験条件			/Ľ 」東		σ΄	kN/m ²	60			
<u></u> 供	<u> </u>		体		Vo.	KIV III	1	2	3	4
	高	-		さ	H_0	cm	10. 172	10. 098	10. 110	10. 051
圧	直			 径	D_0	cm	5. 009	5. 010	4. 980	5. 038
密	乾	 燥	密	 度	$\rho_{d0}^{3)}$	g/cm ³	1. 368	1. 274	1. 400	1. 454
	間	· 隙	(比	$e_0^{3)}$		0. 913	1.054	0.869	0.800
前	相	· 対	密	度	D_{r0}^{-3}	%				
	体	責 変	:化	量	ΔV_{c}	cm ³	1.40	1.48	1.40	1. 20
-	軸	変	位	量	ΔH_{c}	cm	0.063	0.038	0.013	0.013
圧	体			積	V _c	cm ³	199.05	197. 58	195. 55	199. 16
	高			さ	H_c	cm	10. 109	10.060	10. 097	10. 038
密	断	重	i i	積	A c	cm^2	19. 69	19.64	19. 37	19. 84
	炉	乾 煉	質	量	<i>m</i> _s	g	274. 24	253. 58	275. 70	291.45
後	乾	燥	密	度	$ ho_{ m dc}$	g/cm ³	1. 378	1. 283	1. 410	1. 463
佼	間	隙	(比	$e_{{ iny c}}^{3)}$		0.899	1.039	0.856	0.788
	相	対	密	度	$D_{\rm rc}$ 3)	%				
	圧	セノ	レ圧?	変化	Δσ	$kN/m^{\scriptscriptstyle 2}$	40.0	40. 0	40.0	40.0
間	密	間隙	水压	変化	Δu	kN/m^2	39. 7	39.8	39.8	39. 4
隙	24	測知	定に身	更し	た時間	min	5	5	5	5
圧	前	В		値	•		0.99	1.00	1.00	0.99
係	圧	セノ	ル圧	変化	Δσ	kN/m^2	20.0	20.0	20.0	20. 0
	/	間隔	∦水∫	Ξ[Δu u	kN/m²	19. 5	19.6	19.6	19. 6
数	密	変	1	E	Δu_1	kN/m^2	19. 0	19. 2	19.3	19. 2
В	後	測知	定に引	更して	た時間	min	5	5	5	5
		В		値	4)		0.96	0. 97	0.97	0.97

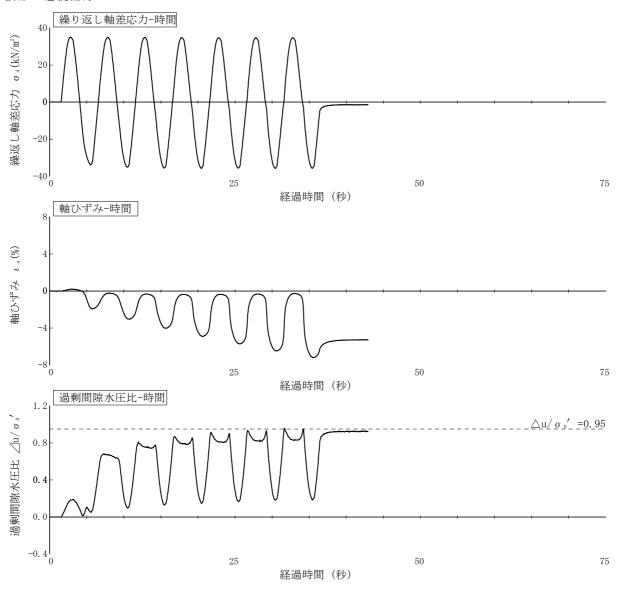
特記事項

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。
- 3) 必要に応じて記載する。
- 4) 圧密後 B値= $(\Delta u_u + \Delta u_1)/2 \Delta \sigma$

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

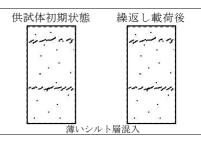
試験年月日


2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		1	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc	$/P_{\rm E}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背	且	Ξ u ь	kN/m^2	200	DA	≦1% ¹)	1.03		34. 5	
験条	圧犯	密応力	σ_c'	kN/m^2	60	DA	=1%	1.03		34. 5	0.5
件	有效	拘束日	$\exists \sigma_0'$	$kN/m^{\scriptscriptstyle 2}$	60	L	2%	1.03		34. 5	1.0
載	荷	波 开	<i>(</i>		正弦波		5%	0.99		35. 0	4. 5
載ィ	岢 周	波娄	f	Hz	0.2		%				
繰返	繰返し応力振幅比 $\sigma_a/2\sigma_b'$ 0.288					過剰間隙水圧比 95% のときの繰返し載荷回数 N_{u95}			6. 5		


波形の連続記録2

特記事項

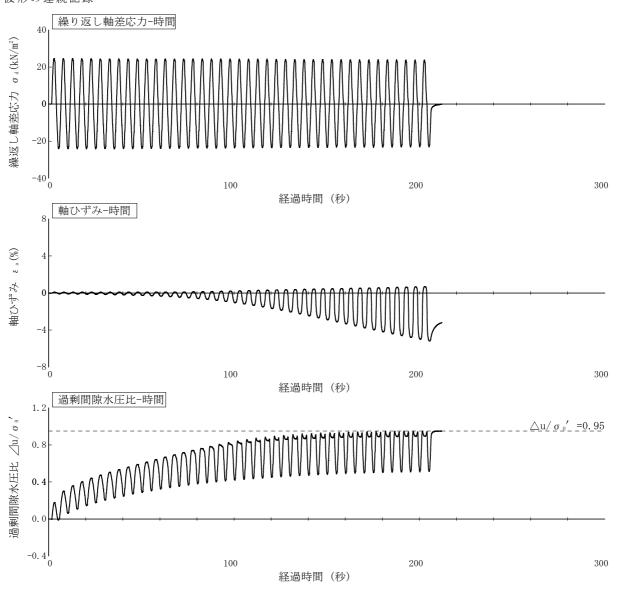
1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または,軸 荷重,軸変位,過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試 体 No.	2	軸ひずみの両振幅	圧縮・伸張荷重の比 $P_{\rm c}/P_{\rm E}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背 圧 u₁ kN/m	200	<i>DA</i> ≤1% 1)	1.01	24. 0	
験条	圧密応力 σ' kN/m	60	DA = 1%	1.02	24. 2	18
件	有効拘束圧 σ₀′ kN/m	60	2%	1.02	24. 1	24
載	荷 波 形	正弦波	5%	1.02	24. 0	37
載る		0.2	%			
繰返	し応力振幅比 $\sigma_a/2\sigma_o'$	0. 200	過剰間隙水圧比95%のと	きの繰返し載荷回数 $N_{\scriptscriptstyle m u95}$	41	

波形の連続記録2

特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または,軸 荷重,軸変位,過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

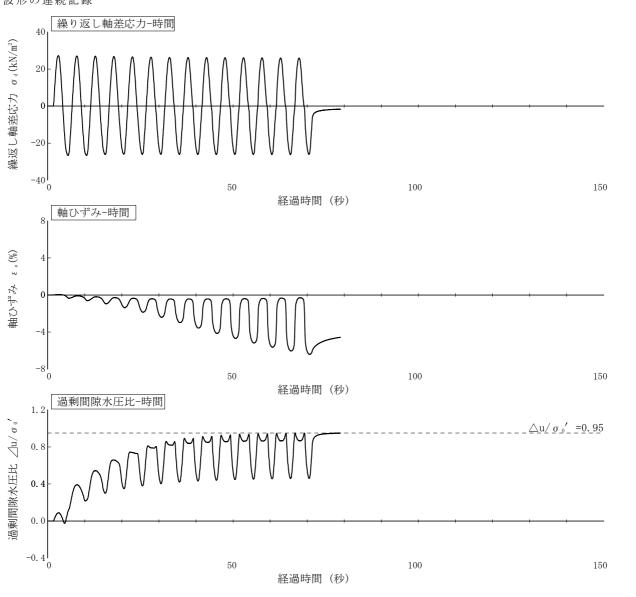
 $[1kN/m^2 = 0.0102kgf/cm^2]$

繰返し載荷後

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

験 者 池田 謙信

供	試	体	No.		3	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc/F	P _E 繰返し軸差応力 σ _d kN/m²	繰返し載荷回数 N。	
試	背	且	Ξ u ь	kN/m^2	200	DA	≦1% ¹)	1. 01	26. 4		
験 条	圧犯	密応力	σ_{c}'	kN/m^2	60	DA	=1%	1. 02	26. 7	3. 5	
件	有效	拘束月	$\exists \sigma_0'$	kN/m^2	60		2%	1.02	26. 5	6. 5	
載	荷	皮 开	<u> </u>		正弦波		5%	1. 01	26. 3	11	
載る	声 周	波数	f	Hz	0.2		%				
繰返し応力振幅比 $\sigma_{\rm d}/2\sigma_{\rm d}'$					0. 220	過剰間隙水圧比95%のときの繰返し載荷回数 $N_{ m u95}$			14		

波形の連続記録2

特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力, 軸ひずみ 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

供試体初期状態	
[
2360	
1 9 1	

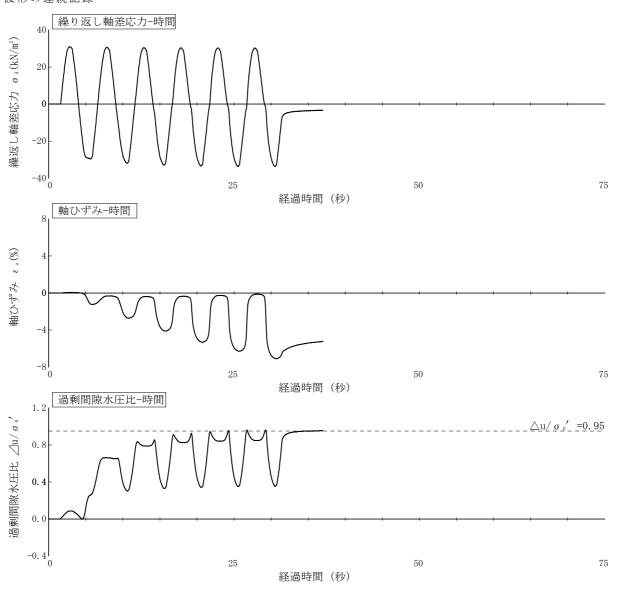
繰返し載荷後 0 0

0 5 4 1

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試 体 No.	4	軸ひずみの両振幅	圧縮・伸張荷重の比 $P_{\rm c}/P_{\rm E}$	繰返し軸差応力 σ _d kN/m²	繰返し載荷回数 N。	
試	背 圧 $u_{\scriptscriptstyle b}$ kN/m²	200	<i>DA</i> ≤1% 1)	1.04	30. 3		
験 条	圧密応力 σ _c ′ kN/m²	60	DA = 1%	1.04	30. 3	0.8	
件	有効拘束圧 σ ₀ ′ kN/m²	60	2%	1.01	30.6	1.5	
載	荷 波 形	正弦波	5%	0. 95	31. 3	4. 0	
載~	時周波数 f Hz	0.2	%				
繰返	し応力振幅比 σα/2σ%	0. 253	過剰間隙水圧比95%のと	きの繰返し載荷回数 $N_{\scriptscriptstyle m u95}$	5. 0		

波形の連続記録2

特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または,軸 荷重,軸変位,過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

供記	式体初期状態	

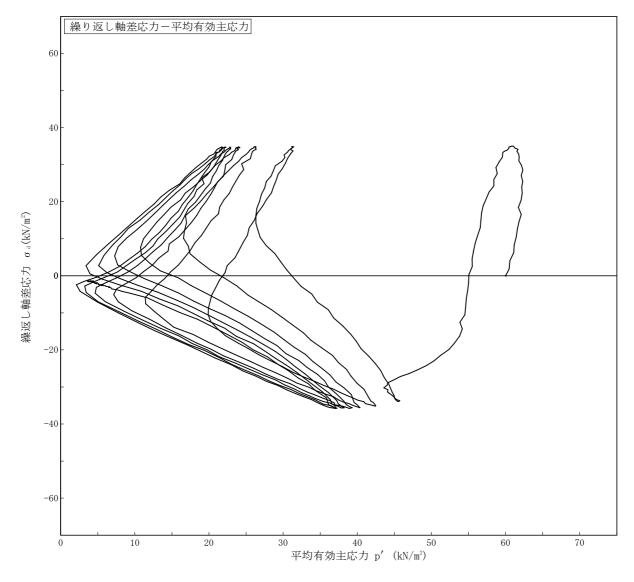
٥

繰返し載荷後

0541

土の繰返し非排水三軸試験(波形記録)

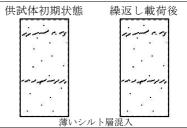
調査件名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		1	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc	$/P_{\rm E}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背	且	Ξ u ь	kN/m^2	200	DA	≦1% ¹)	1.03		34. 5	
験条	圧犯	密応力	σ_{c}'	kN/m^2	60	DA	=1%	1.03		34. 5	0.5
件	有效	拘束日	$\exists \sigma_0'$	$kN/m^{\scriptscriptstyle 2}$	60	L	2%	1.03		34. 5	1.0
載	荷	波 开	<i>(</i>		正弦波		5%	0.99		35. 0	4.5
載ィ	岢 周	波娄	f	Hz	0.2		%				
繰返し応力振幅比 σα/2σ%					0. 288	過剰間隙水圧比95%のときの繰返し載荷回数 $N_{ ext{u95}}$			6. 5		


波形の連続記録2)

特記事項

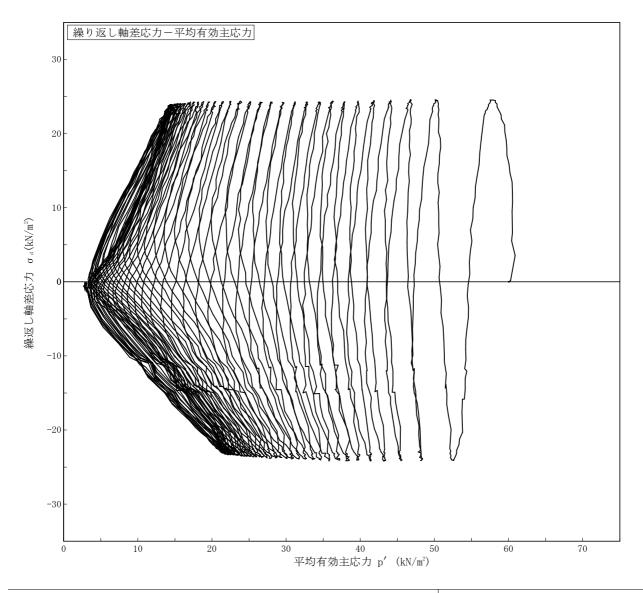
1) DA =1%までの平均値 2) 繰返し軸差応力, 軸ひずみ 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 \dot{=} 0.0102kgf/cm^2]$

0541

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		2	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc/	$/P_{\rm E}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背	圧	Ξ u ь	kN/m^2	200	DA	≦1% ¹)	1. 01		24.0	
験条	圧犯	密応力	σ_{c}'	kN/m^2	60	DA	=1%	1. 02		24. 2	18
件	有效	拘束月	$\exists \sigma_0'$	$kN/m^{\scriptscriptstyle 2}$	60	L	2%	1.02		24. 1	24
載	荷	波 开	<u> </u>		正弦波		5%	1. 02		24.0	37
載ィ	岢 周	波数	f	Hz	0.2		%				
繰返し応力振幅比 $\sigma_{ m d}/2\sigma_{ m d}'$					0. 200	過剰間隙水圧比 95% のときの繰返し載荷回数 N_{u95}			$V_{\rm u95}$	41	

波形の連続記録2)

特記事項

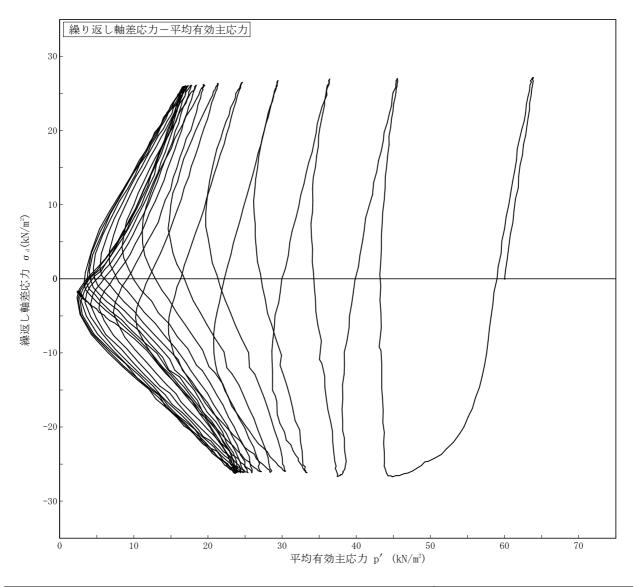
1) DA =1%までの平均値 2) 繰返し軸差応力, 軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 \dot{=} 0.0102kgf/cm^2]$

0541

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

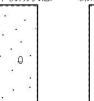

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		3	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc/F	P _E 繰返し軸差応力 σ _d kN/m²	繰返し載荷回数 N。
試	背	且	Ξ u ь	kN/m^2	200	DA	≦1% ¹)	1. 01	26. 4	
験 条	圧犯	密応力	σ_{c}'	kN/m^2	60	DA	=1%	1. 02	26. 7	3. 5
件	有效	拘束月	$\exists \sigma_0'$	$kN/m^{\scriptscriptstyle 2}$	60		2%	1. 02	26. 5	6. 5
載	荷	皮 开	<u> </u>		正弦波		5%	1. 01	26. 3	11
載る	声 周	波数	f	Hz	0.2		%			
繰返	し応力	振幅片	Ł σ _d ,	/2 σ ′ ₀	0. 220	過剰間隙	水圧比95%のと	きの繰返し載荷回数 N_{us}	5	4

波形の連続記録2)



特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

供試体初期状態

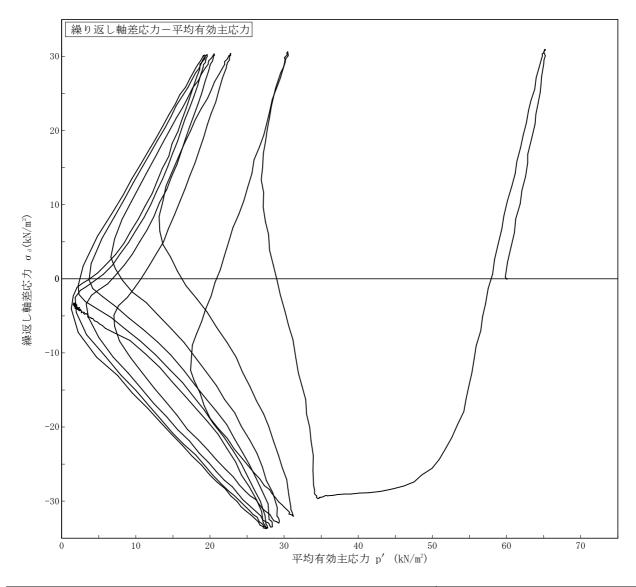
繰返し載荷後

0

0541

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

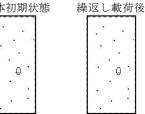

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		4	軸ひず	みの両振幅	圧縮・伸張荷重の比 P _c /P _E	繰返し軸差応力 σ _d kN/m²	繰返し載荷回数 N。
試	背	<u>J-</u>	Ĕ u♭	kN/m^2	200	DA	≦1% ¹)	1.04	30. 3	
験条	圧犯	密応え	ל ס _י '	kN/m^2	60	DA	=1%	1.04	30. 3	0.8
件	有效	拘束	Ē σ,′	$kN/m^{\scriptscriptstyle 2}$	60	<u> </u>	2%	1.01	30. 6	1.5
載	荷	波刃	多		正弦波		5%	0.95	31. 3	4.0
載る	市 周	波数	文 <i>f</i>	Hz	0.2		%			
繰返	し応力	振幅	七 σ _d ,	/2 σ ′ ₀	0. 253	過剰間隙	水圧比95%のと	きの繰返し載荷回数 $N_{\scriptscriptstyle m L95}$	5.	0

波形の連続記録2)



特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続記録も添える。

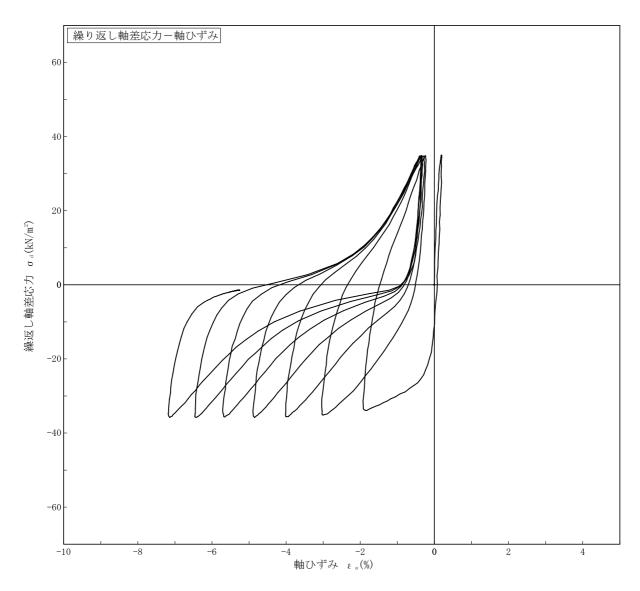
 $[1kN/m^2 \dot{=} 0.0102kgf/cm^2]$

供試体初期状態

0

土の繰返し非排水三軸試験(波形記録)

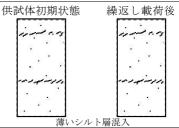
調査件名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		1	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc	$/P_{\rm E}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背	且	Ξ u ь	kN/m^2	200	DA	≦1% ¹)	1.03		34. 5	
験条	圧犯	密応力	σ_{c}'	kN/m^2	60	DA	=1%	1.03		34. 5	0.5
件	有效	拘束日	$\exists \sigma_0'$	$kN/m^{\scriptscriptstyle 2}$	60	L	2%	1.03		34. 5	1.0
載	荷	波 开	<i>(</i>		正弦波		5%	0.99		35. 0	4. 5
載ィ	岢 周	波娄	f	Hz	0.2		%				
繰返	し応力	振幅片	Ł σ _d ,	/2 σ ′ ₀	0.288	過剰間隙	水圧比95%のと	きの繰返し載荷回数	$N_{ m u95}$	6.	5


波形の連続記録2)

特記事項

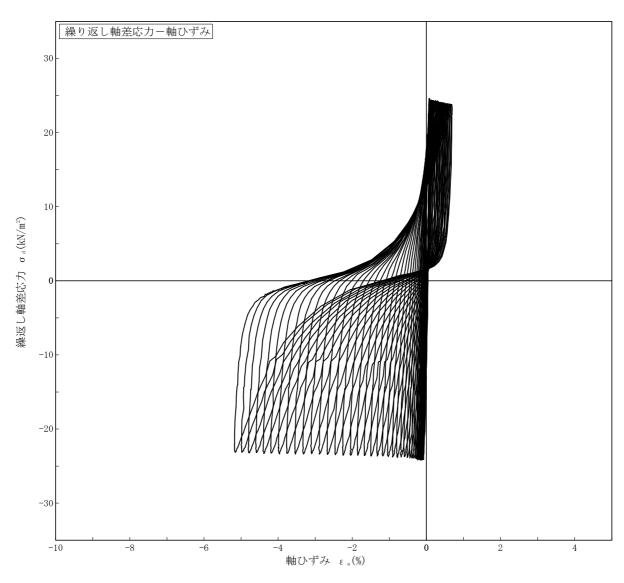
1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続記録も添える。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

0541

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

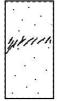

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

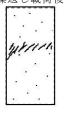
試 験 者 池田 謙信

供	試 体 No.	2	軸ひずみの両振幅	圧縮・伸張荷重の比 $P_{\rm c}/P_{\rm E}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背 圧 u₁ kN/m	200	<i>DA</i> ≤1% 1)	1.01	24. 0	
験条	圧密応力 σ' kN/m	60	DA = 1%	1.02	24. 2	18
件	有効拘束圧 σ₀′ kN/m	60	2%	1.02	24. 1	24
載	荷 波 形	正弦波	5%	1.02	24. 0	37
載る		0.2	%			
繰返	し応力振幅比 $\sigma_a/2\sigma_o'$	0. 200	過剰間隙水圧比95%のと	きの繰返し載荷回数 $N_{\scriptscriptstyle m u95}$	41	

波形の連続記録2)


特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。

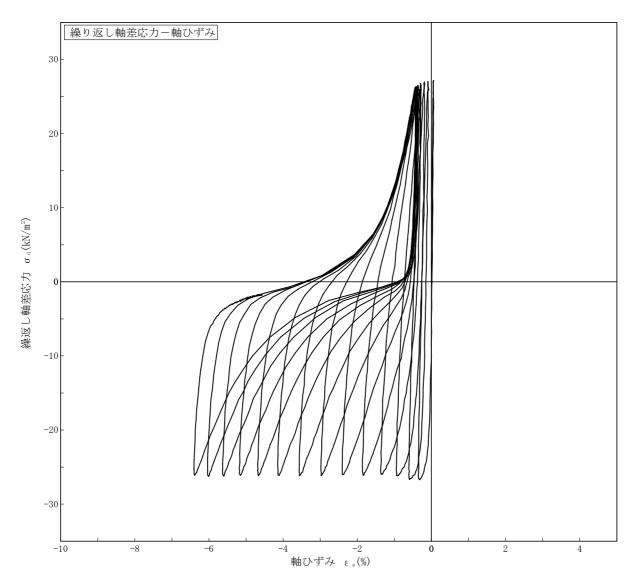

または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。

 $[1kN/m^2 \dot{=} 0.0102kgf/cm^2]$

繰返し載荷後

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試	体	No.		3	軸ひず	みの両振幅	圧縮・伸張荷重の比 Pc	$_{\mathrm{c}}/P_{\mathrm{E}}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背	Æ	Ē u₅	kN/m^2	200	DA	≦1% ¹)	1. 01		26. 4	
験条	圧犯	密応力	ל סנ'	kN/m^2	60	DA	=1%	1. 02		26. 7	3. 5
件	有效	拘束月	Ē σ,′	$kN/m^{\scriptscriptstyle 2}$	60	<u> </u>	2%	1.02		26. 5	6. 5
載	荷	皮 开	9		正弦波		5%	1. 01		26. 3	11
載者	計 周	波娄	女 f	Hz	0.2		%				
繰返	し応力	振幅」	七 σ _d ,	/2 σ ′ ₀	0. 220	過剰間隙	水圧比95%のと	きの繰返し載荷回数	$N_{ m u95}$	14	

波形の連続記録2)

特記事項 1) DA =1%までの平均値 供試体初期状態 繰返し載荷後 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 0 0 または別途添付してよい。 必要に応じてセル圧の連続 記録も添える。 $[1kN/m^2 \dot{=} 0.0102kgf/cm^2]$

土の繰返し非排水三軸試験(波形記録)

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

供	試 体 No.	4	軸ひずみの両振幅	圧縮・伸張荷重の比 $P_{\mathrm{c}}/P_{\mathrm{E}}$	繰返し軸差応力 $\sigma_{ m d}$ kN/m^2	繰返し載荷回数 N。
試	背 圧 u₁ kN/m²	200	<i>DA</i> ≤1% 1)	1. 04	30. 3	
験条	圧密応力 σ。′ kN/m²	60	DA = 1%	1.04	30. 3	0.8
件	有効拘束圧 σ ₀ ′ kN/m²	60	2%	1.01	30. 6	1.5
載	荷 波 形	正弦波	5%	0. 95	31. 3	4.0
載ィ		0. 2	%			
繰返	し応力振幅比 σα/2σ%	0. 253	過剰間隙水圧比95%のと	きの繰返し載荷回数 $N_{\scriptscriptstyle m u95}$	5.	0

波形の連続記録2)

特記事項

1) DA =1%までの平均値 2) 繰返し軸差応力,軸ひずみ, 過剰間隙水圧比または, 軸 荷重, 軸変位, 過剰間隙水 圧のいずれかを図示する。 または別途添付してよい。 必要に応じてセル圧の連続記録も添える。

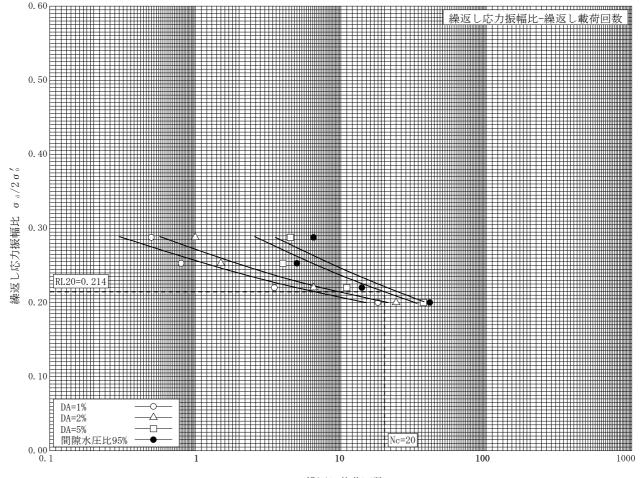
 $[1kN/m^2 = 0.0102kgf/cm^2]$

供試体初期状態

0

繰返し載荷後

土の繰返し非排水三軸試験(応力比-繰返し回数)


調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

土	貿	Î	名	籾	5	分級された砂	(SP)	試	荷重計容量 N	(位置)		1000(セルの内)
試	背		圧	Иb	kN/m^2	200		験装	載荷ピストン	· · · · · · · · · · · · · · · · · · ·		無
試験条	圧	密 応	力	$\sigma_{\rm c}'$	kN/m^2	60		置	間隙水圧測定経路	A体積変化 cm³/k1	N/m^2	0.0001
件	有 郊	拘す	₹ 圧	σ_0'	kN/m^2	60		ゴム	材	質		ラテックス
載	荷	ì	皮	形		正弦波		スリ	厚	r Š	nm	0.3
載	荷	引 波	数	f	Hz	0. 2		ブ	ゴムスリーフ	゛貫入量		補正無
供	試	,	体	No.		1			2	3		4
乾	燥	密	度	$ ho_{ m dc}$	g/cm^3	1.378			1. 283	1. 410		1. 463
間	ß		比	e_{c}		0.899			1.039	0.856		0. 788
相	対	密	度	$D_{ m rc}$	%							
繰步	豆 し 車	主差 戊	5 力	$\sigma_{\rm d}$	kN/m^2	34. 5			24. 0	26. 4		30. 3
繰返	をし応	力振巾	畐比	$\sigma_{ m d}$ /2	2 σ′0	0. 288			0.200	0. 220		0. 253
繰 返	軸ひ		DA =	1%	0	0.5			18	3. 5		0.8
し	ずる			2%		1.0			24	6. 5		1.5
載	の同			5%		4.5			37	11		4.0
載荷回数	両 振 幅			%	\Diamond							·
数 ——	過剰	間隙水原	王比	95%	N_{u95}	6.5			41	14		5. 0

土の三軸試験の供試体作製・設置

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 6日

試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信

					番号と名利	5	0542-2009 地盤村							
t 	料 	<i>O</i>		態 1)			さない			の密		$\rho_s^{3)}$	g/cm ³	2. 658
ŧ	試	体の	作	製 2)		トリ	ミング法	液	性	限	界	wL	% ⁴⁾	62. 4
=	質	-	名	称	シルト	、(高剤	後性限界)(MH)	塑	性	限	界	$w_{\mathbb{P}}$	% ⁴⁾	34. 7
	供	1	式	体	No.		1							
							5. 050							
		直	名	Ĕ		cm								
	平	均	直	径	$D_{\rm i}$	cm	5.050							
刀							9. 993							
		高	5	2		cm								
钥														
	平	均	高	さ	H_{i}	cm	9. 993							
4	体			積		cm ³	200. 16							
犬	含	;	水 	比	$w_{ m i}$	%	75. 2							
	質			量	<i>m</i> i	g	310.80							
態	湿	潤	密	度	$ ho_{\mathrm{t}\mathrm{i}}{}^{3)}$	g/cm^3	1.553							
	乾	燥	密	度	$ ho_{\mathrm{di}}{}^{3)}$	$\rm g/cm^3$	0.886							
	間		隙	比	$e_{\mathrm{i}}^{3)}$		2.000							
	飽		和	度	S_{ri} 3)	%	99. 9							
	相	対	密	度	$D_{\mathrm{ri}}^{-3)}$	%								
		軸	変位	量の測	定方法									
艾	設品	置時の	軸変	位 量		cm	0.000							
置	飽雨	口過程(の軸変	位量		ст	-0.018							
	軸	変	位	量	$\Delta H_{ m i}$ 5)	ст	-0.018							
包口		体	積変化	匕量の測	定方法		軸変位量及び直径の変位量から計算	Ĭ			·			
田田	設置	置時の	体積変	化量		cm^3	0.000							
呈	飽和	1過程の	·)体積変	变化量		cm^3	-1. 082							
	体	積	変 化	量	$\Delta V_{\mathrm{i}}^{5)}$	cm ³	-1. 082							
<u>.</u>	高			さ	H_0	cm	10. 011							
王密	直			径	D_0	cm	5. 059							
前	体			積	V_0	cm ³	201. 24							
式	乾	燥	密	度	$ ho_{\mathrm{d}0}{}^{\mathrm{3})}$	g/cm ³	0.881							
険前	間		 隙	比	e 0 3)		2.017							
2	相	対	密	度	$D_{\rm r0}^{\ \ 3)}$	%								
戸	容		器	No.			T301							
吃	(炉	 乾燥供試		 ¦)質量		g	249. 24							
燥	容	器	 質	量		g	71. 85							
後	/ / / / / / / / / / / / / / / / / / /		<u>:::</u> 燥 質		<i>m</i> _s	g	177. 39							

特記事項

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。
- 3) 必要に応じて記載する。
- 4) 必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。
- 5) 設置時の変化と飽和過程および B 値測定過程での変化を合わせる。

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 6日

試料番号(深さ) 7-T3 (3.20~3.70m)

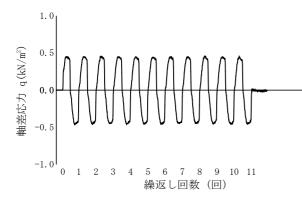
試 験 者 池田 謙信

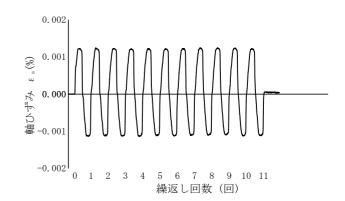
試料	番号(深さ) 7-T3(3.20~3.70r	n)		試 験 者 池田 謙信
試	料の状態1)	乱さない		土 粒 子 の 密 度 ρ _s ³⁾ g/cm ³ 2.658
供	試体の作製方法2)	トリミング法		液性限界
土	質 名 称 シルト	(高液性限界) (MH)		塑性限界
供	試体 No. 1	飽 和 方 法		二重負圧法 圧 密 条 件 等方
試	軸 方 向 応 力 σ _{ac} kN/m²	250	載	載 荷 波 形 正弦波
配	側方向応力(=外圧, 内圧) σ _{rc} kN/m ²	250		載 荷 周 波 数 f Hz 0.2
験	背 圧 $u_{\text{\tiny b}}$ kN/m²	200	荷	排 水 条 件 非排水
条	軸方向圧密応力 σ' _{ac} kN/m ²	50	条	1サイクルデータポイント数 100
	側方向圧密応力 σ _{rc} kN/m ²	50	件	載 荷 段 階 数 14
件	異方圧密応力比 σ' _{rc} / σ' _{ac} (= K) ⁵			軸 変 位 計 圧密前 cm 0.000
	荷重計の容量 N	500		の 読 み 圧密後 cm 0.049
	トルク計の容量 ⁶⁾ N·m			排 水 量 圧密前 cm³ 0.00
	軸 大 位置 ①	変 位 計 回転角計 の位置	圧	の 読 み 圧密後 cm³ 2.80
試	☆ 変 種類 変位計	回転角計の位置		軸 変 位 量 ΔH。 cm 0.049
₽ ₁ -/	変 位 数 1			体積変化量 ΔV。 cm³ 2.80
	位 小 位置 ②			高 さ H_{c} cm 9.962
	変 種類 ギャップセンサー		密	外 径 (D _c , D_o) cm 5.036
験	計 位 数 2	(D)		内 径 $D_{ m ic}^{ m 6)}$ cm
		_		体 積 V_{c} cm ³ 198.44
	変 種類]		断 面 積 A。 cm ² 19.92
装	転 位 数		後	乾 燥 質 量 m _s g 177.39
48	角 │ 小 │位置 │			乾燥密度ρ _{dc} = m _s /V _c g/cm³ 0.894
	変 種類			間 隙 比 $e^{_{\rm c}^{3}}$ 1.973
	計位数			相 対 密 度 $D_{\rm rc}$ %
置	金 ⁶⁾ 数 量 属	リブの位置		$_{\mathrm{E}}$
	属 製 高さcm リ		間	間隙水圧増加量 Δu kN/m² 39.5 密 マーニー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	ブ 厚 さ cm		隙	御定に要した時間 min 5
	間隙水圧経路体積変化 cm³ /kN/m²	0. 0001		前 B 値 0.99
ゴム	材質	ラテックス	圧	医 等方応力増加量 Δ σ kN/m² 20.0
スリーフ	-	0.5	係	
圧	高 さ $H_{\scriptscriptstyle 0}$ cm	10. 011	数	$\Delta u_1 \text{ kN/m}^2$ 19.0
密	外 径 $(D_{\bullet}, \overline{D_{\bullet}^{\bullet}})$ cm	5. 059	В	後 測定に要した時間 min 5
前	内 径 D_{i0}^{6} cm			B 値 0.97
特記	事項			
			<i>t</i> ++-	
			供試	
			体	
			の	
			状	
			況	LI

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を 記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を 記載する。
- 3) 必要に応じて記載する。 4) 必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場 合は最小乾燥密度,最大乾燥密度等を記載する。
- 5) 異方応力状態で試験するときのみ記入する。
- 6) 中空円筒供試体による試験の場合に記入する。

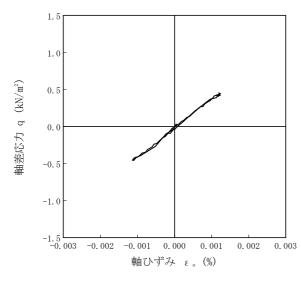
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	R) (MH)	供 試 体 No.	1	載 荷 段 階	1
繰	軸変位量 △ H _n cm	0.003	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0.061	9177V	-	<u> </u>	等価せん断剛性率 <i>G</i> 。。	废座峽农平 们 /0
し	高 さ $H_{\scriptscriptstyle n}$ cm	9. 959	2	0.46	1. 17E-03	39. 32	0.52
載	外径 (D _n , D_{on})cm	5. 036	3	0.46	1. 18E-03	38. 98	0.87
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	0.46	1. 16E-03	39. 66	1.06
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 38	5	0.46	1. 16E-03	39. 66	0.20
験前	断面積 A _n cm ²	19. 92	6	0.45	1. 15E-03	39. 13	0.76
נימ	間隙比 e	1. 973	7	0. 45	1. 16E-03	38. 79	0.64
載	軸変位量 △ H _n cm	0.002	8	0.45	1. 15E-03	39. 13	0.43
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 037	9	0.46	1.16E-03	39. 66	0.44
後			10	0.46	1. 19E-03	38. 66	0.84

波形の連続記録1)

履歴曲 線2)

1.5 1.0 軸差応力 q (kN/m²) 0.5 0.0 -0.5 -1.0 -1.5 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 軸ひずみ ε。(%)

5サイクル目

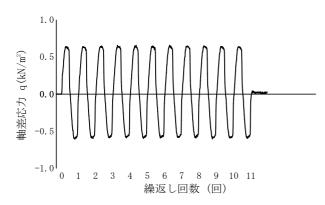
10サイクル目

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

調査件名 知多市新庁舎等設計委託に伴う地盤調査

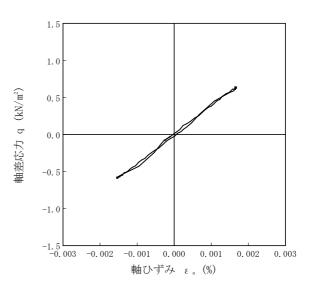
試験年月日


2023年 7月 7日

試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	P) (MH)	供 試 体 No.	1	載荷段階	2
	軸変位量 △H _n cm	0.002	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 8 %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	0. 037	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 平 n /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 960	2	0.62	1.61E-03	38. 51	0.03
載	外径 (D _n , D_{on})cm	5. 036	3	0.62	1.60E-03	38. 75	0.11
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	0.62	1.60E-03	38. 75	0.05
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 40	5	0.63	1.60E-03	39. 38	0.08
験前	断面積 A _n cm ²	19. 92	6	0.62	1.59E-03	38. 99	0.10
	間隙比 e n	1. 973	7	0.62	1.60E-03	38. 75	0.40
載	軸変位量 △ H _n cm	-0.001	8	0.62	1.60E-03	38. 75	0.50
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	-0.024	9	0.63	1.61E-03	39. 13	0.41
後			10	0.62	1.58E-03	39. 24	0.15


波形の連続記録1)

0.0020.001 ε a (%) 軸ひずみ 0.000 -0.001 -0.002 0 1 2 3 4 5 6 7 8 9 10 11 繰返し回数(回)

履歴曲 線2)

5サイクル目

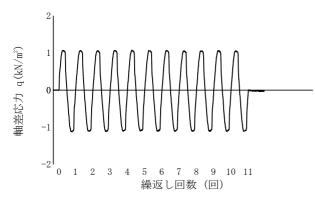
10サイクル目

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

調査件名 知多市新庁舎等設計委託に伴う地盤調査

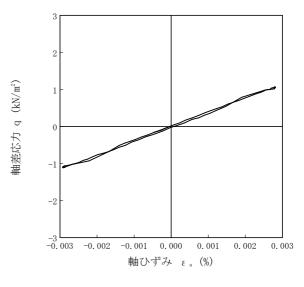
試験年月日


2023年 7月 7日

試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信

=	上 質 名 称	シルト(高液性限界	早) (MH)	供 試 体 No.	1	載荷段階	3
	軸変位量 △ H _n cm	-0.001	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	-0.024	9177	井振幅せん断応力 τ。 ΚΙΝ/ΙΙΙ	<u> </u>	等価セル斯剛性率 6	废症概数平 1 /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 963	2	1.09	2.86E-03	38. 11	0.36
載	外径 $(D_n, \frac{D_{-3}}{D_{0n}})$ cm	5. 036	3	1.09	2.86E-03	38. 11	0.36
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	1.09	2.85E-03	38. 25	0. 23
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 46	5	1.09	2.86E-03	38. 11	0. 20
験前	断 面 積 A _n cm ²	19. 92	6	1.09	2.85E-03	38. 25	0.41
	間隙比 e n	1. 974	7	1.09	2.85E-03	38. 25	0.46
載	軸変位量 △ H _n cm	0.001	8	1.09	2.85E-03	38. 25	0.10
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{n}}$ cm $^{\scriptscriptstyle 3}$	0.024	9	1.09	2.84E-03	38. 38	0. 26
後			10	1.09	2.85E-03	38. 25	0. 27


波形の連続記録1)

0.0040.002 ε a (%) 軸ひずみ 0.000 -0.002-0.004 0 6 7 8 9 10 11 1 2 3 4 5 繰返し回数(回)

履歴曲線의

5サイクル目

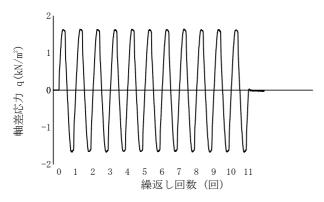
10サイクル目

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

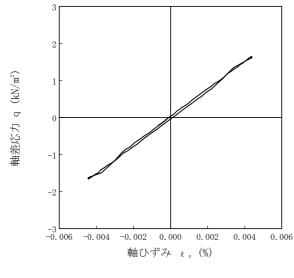
調査件名 知多市新庁舎等設計委託に伴う地盤調査

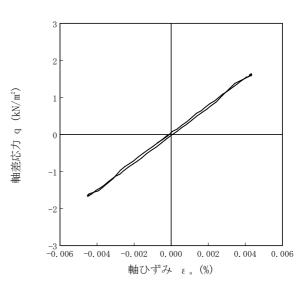
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	P) (MH)	供 試 体 No.	1	載荷段階	4
	軸変位量 △H _n cm	0.001	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0.024	9177	<u> </u>	井振幅せん断ひずみ(γ)s₁ /0	等価せん断剛性率 G	腹腔侧裂竿n /0
l	高 さ <i>H</i> n cm	9. 961	2	1.65	4. 37E-03	37. 76	0.50
載	外径 (D _n , D_{on})cm	5. 036	3	1.66	4. 39E-03	37. 81	0.47
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	1.64	4. 40E-03	37. 27	0.49
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 42	5	1.65	4. 39E-03	37. 59	0. 59
験前	断 面 積 A _n cm ²	19. 92	6	1.65	4. 39E-03	37. 59	0.65
	間隙比 e n	1. 973	7	1.64	4. 39E-03	37. 36	0.55
載	軸変位量 △ H _n cm	0.004	8	1.66	4. 42E-03	37. 56	0.44
荷	体積変化量 $ extstyle \Delta V_{\scriptscriptstyle extstyle n}$ cm $^{\scriptscriptstyle 3}$	0. 085	9	1.66	4. 41E-03	37. 64	0.45
後			10	1.65	4. 41E-03	37. 41	0.67


波形の連続記録1)

履歴曲線의

5サイクル目

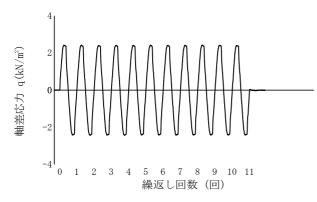
10サイクル目

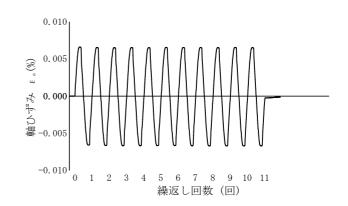
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

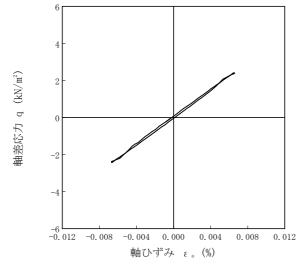
調査件名 知多市新庁舎等設計委託に伴う地盤調査

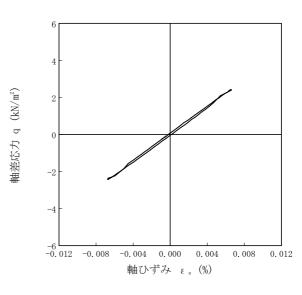
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	(MH)	供 試 体 No.	1	載荷段階	5
	軸変位量 △ H _n cm	0.004	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率h %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	0. 085	9177V	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 平 n /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 958	2	2. 43	6.60E-03	36. 82	0.98
載	外径 (D _n , D_{on})cm	5. 036	3	2. 42	6. 58E-03	36. 78	0.96
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	2. 43	6.61E-03	36. 76	0.90
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 36	5	2. 42	6.60E-03	36. 67	0.85
験前	断面積 A _n cm ²	19. 92	6	2. 43	6.60E-03	36. 82	0.80
	間隙比 e n	1. 972	7	2. 43	6. 61E-03	36. 76	0.80
載	軸変位量 △ H _n cm	0.002	8	2. 43	6.62E-03	36. 71	0.99
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	0. 037	9	2. 43	6.60E-03	36. 82	0.97
後			10	2. 42	6.64E-03	36. 45	0.95


波形の連続記録1)

履歴曲線의

5サイクル目

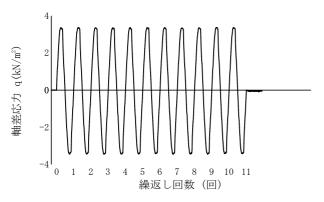
10サイクル目

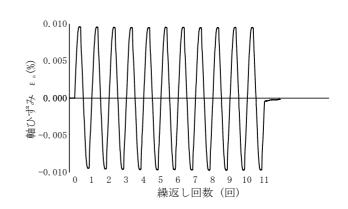
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

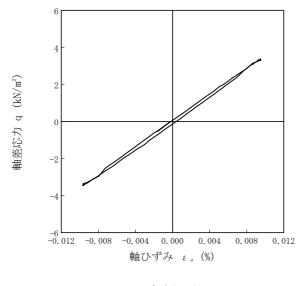
調査件名 知多市新庁舎等設計委託に伴う地盤調査

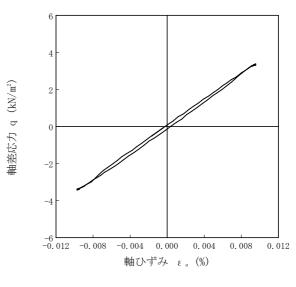
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	早) (MH)	供 試 体 No.	1	載 荷 段 階	6
繰	軸変位量 △ H _n cm	0.002	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 037	9177	-	<u> </u>	等価せん断剛性率 <i>G</i> 。。	废正枫农平 1 /0
し	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 960	2	3. 42	9. 50E-03	36.00	1.30
載	外径 (D _n , D_{on})cm	5. 036	3	3. 42	9. 56E-03	35. 77	1.27
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	3. 41	9. 54E-03	35. 74	1. 20
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 40	5	3. 42	9. 56E-03	35. 77	1.21
験前	断面積 A _n cm ²	19. 92	6	3. 40	9. 53E-03	35. 68	1.24
נימ	間隙比 e	1. 973	7	3. 42	9. 58E-03	35. 70	1. 17
載	軸変位量 △ H _n cm	0.002	8	3. 40	9. 58E-03	35. 49	1.21
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 037	9	3. 42	9. 58E-03	35. 70	1.31
後			10	3. 41	9. 60E-03	35. 52	1. 17


波形の連続記録1)

履歴曲線의

5サイクル目

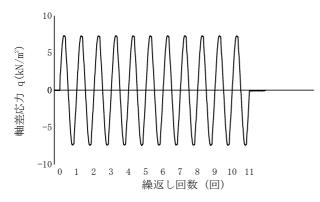
10サイクル目

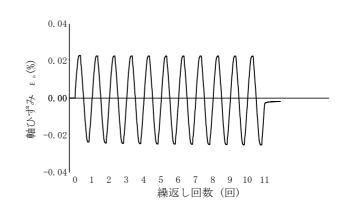
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

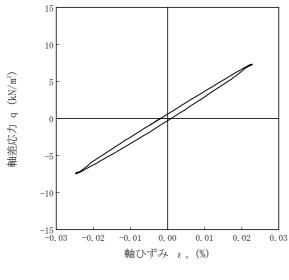
調査件名 知多市新庁舎等設計委託に伴う地盤調査

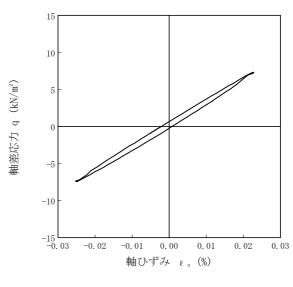
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	R) (MH)	供 試 体 No.	1	載 荷 段 階	7
繰	軸変位量 ΔH _n cm	0.000	サイクル	片振幅軸応力 σ _α kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 8%
返	体積変化量 △ V _n cm³	0.000	<i>/ 1 / /•</i>	- 片振幅せん断応力 τ。	- 片振幅せん断ひずみ(γ)s _Λ	等価せん断剛性率 Gen	№ 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
し	高 さ H _n cm	9. 962	2	7. 38	2.33E-02	31. 62	2.78
載	外径 (D _n , D_{on})cm	5. 036	3	7. 36	2.34E-02	31. 45	2.78
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}\mathrm{cm}$		4	7. 38	2. 35E-02	31. 42	2.65
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 44	5	7. 39	2. 36E-02	31. 29	2.75
験前	断 面 積 A _n cm ²	19. 92	6	7. 38	2.37E-02	31. 17	2.84
ניפ	間隙比 e "	1. 973	7	7. 38	2. 37E-02	31. 21	2.75
載	軸変位量 △ H _n cm	0.004	8	7. 38	2. 37E-02	31. 10	2.69
荷	体積変化量 Δ $V_{\rm n}$ cm 3	0. 085	9	7. 39	2. 39E-02	30. 99	2.63
後			10	7. 38	2. 38E-02	31. 01	2.74


波形の連続記録1)

履歴曲線의

5サイクル目

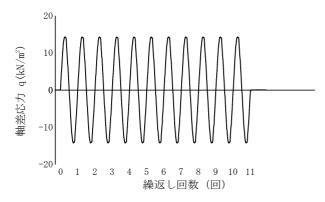
10サイクル目

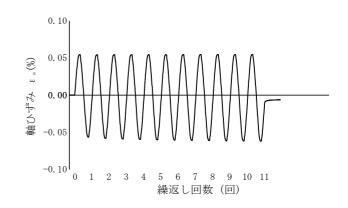
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

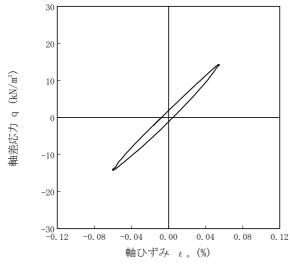
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限を	早) (MH)	供 試 体 No.	1	載荷段階	8
	軸変位量 △ H _n cm	0.003	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0.049	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	腹座侧系竿 n /0
l	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 959	2	14. 29	5.62E-02	25. 45	4.96
載	外径 (D _n , D_{on})cm	5. 036	3	14. 28	5. 67E-02	25. 21	5.01
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	14. 29	5. 69E-02	25. 13	5.01
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 39	5	14. 28	5. 70E-02	25. 05	5.02
験前	断 面 積 A _n cm ²	19. 92	6	14. 29	5. 73E-02	24. 94	4. 98
	間隙比 e 。	1. 973	7	14. 29	5. 76E-02	24. 82	4.92
載	軸変位量 △H _n cm	0.001	8	14. 29	5.77E-02	24. 77	4.86
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0.024	9	14. 28	5. 77E-02	24. 73	4.98
後			10	14. 29	5.81E-02	24. 60	4.94


波形の連続記録1)

履歴曲線의

5サイクル目 10サイクル目

特記事項

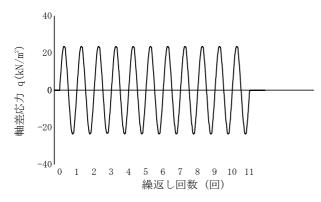
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

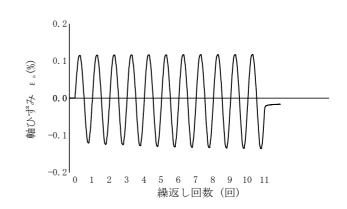
JGS 0 5 4 2

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

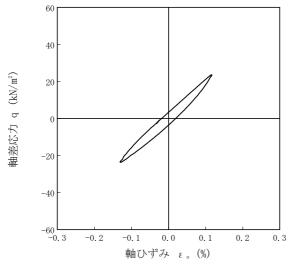
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	早) (MH)	供 試 体 No.	1	載荷段階	9
	軸変位量 △ H _n cm	-0.001	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	-0.012	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	F価せん断剛性率G _{eq} IVI IN / III	限 座 侧 表 平 n /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 963	2	23. 59	1. 20E-01	19. 70	7. 03
載	外径 (D _n , D_{on})cm	5. 036	3	23. 42	1.20E-01	19. 47	6.98
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	23. 59	1.22E-01	19. 41	7.01
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 45	5	23. 61	1.22E-01	19. 32	7.06
験前	断面積 A _n cm ²	19. 92	6	23. 59	1.23E-01	19. 14	7.03
	間隙比 e n	1. 974	7	23. 60	1.24E-01	19. 04	6. 97
載	軸変位量 △ H _n cm	0.008	8	23. 60	1.24E-01	18. 97	6. 92
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	0. 159	9	23. 61	1.25E-01	18. 84	6.87
後			10	23. 59	1.26E-01	18. 78	6.88

波形の連続記録1)

履歴曲線의

60 40 軸差応力 q (kN/m²) 20 -20 -40 -60 -0. 3 -0.2 -0.1 0.00.1 0.2 0.3 軸ひずみ ε。(%)

5サイクル目

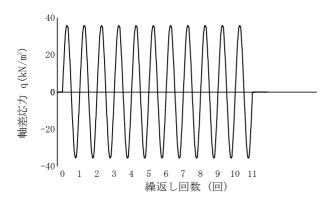
10サイクル目

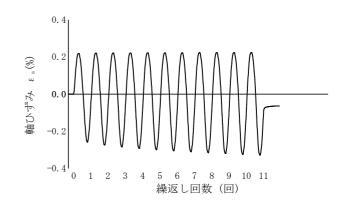
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

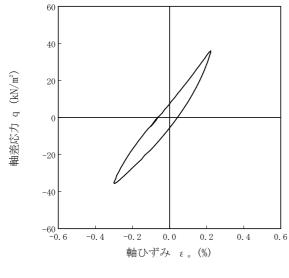
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

試 験 者 池田 謙信


=	上 質 名 称	シルト(高液性限界	早) (MH)	供 試 体 No.	1	載荷段階	10
	軸変位量 △H _n cm	0.011	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} MN/m ²	履歴減衰率h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 208	9177	<u> </u>	<u> </u>	等価セル断剛性率 <i>G</i> eq	腹座侧裂竿 n /0
l	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 951	2	35. 71	2. 45E-01	14. 56	8.99
載	外径 (D _n , D_{on})cm	5. 036	3	35. 72	2. 51E-01	14. 22	9.05
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	35. 72	2. 56E-01	13. 96	9.00
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	198. 23	5	35. 72	2. 59E-01	13. 78	9.09
験前	断 面 積 A _n cm ²	19. 92	6	35. 71	2. 63E-01	13. 59	9.02
	間隙比 e n	1. 970	7	35. 72	2.66E-01	13. 44	8.99
載	軸変位量 △ H _n cm	0. 023	8	35. 73	2.68E-01	13. 34	8.88
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 439	9	35. 73	2.71E-01	13. 20	8.81
後			10	35. 73	2. 73E-01	13. 08	8.74

波形の連続記録1)

履歴曲線의

60 40 軸差応力 q (kN/m²) 20 -20 -40 -60 -0. 6 -0.4-0.2 0.00.2 0.40.6軸ひずみ ε。(%)

5サイクル目

10サイクル目

特記事項

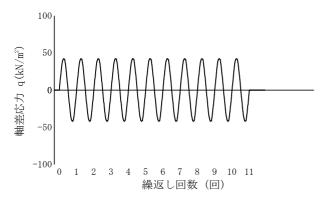
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

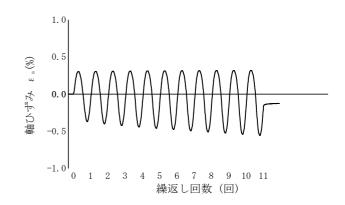
JGS 0 5 4 2

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

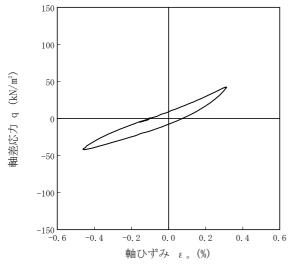
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

験 者 池田 謙信


=	上 質 名 称	シルト(高液性限	界) (MH)	供 試 体 No.	1	載荷段階	11
	軸変位量 △ H _n cm	0.023	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 8 %
凝返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm$	0. 439	9177	<u> </u>	上振幅せん断ひずみ(γ)s _A /0	等価セル断剛性率 <i>G</i> eq	腹座侧裂竿 n /0
し	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 939	2	42. 19	3. 49E-01	12. 09	9. 98
載	外径 (Dn, Don)cm	5. 036	3	42. 19	3.62E-01	11. 65	10. 11
荷	内 径 $D_{\scriptscriptstyle m in}^{\scriptscriptstyle (3)}$ cm		4	42. 21	3. 72E-01	11. 34	10. 15
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle (3)}$ cm	198. 00	5	42. 21	3.83E-01	11. 02	10.11
験前	断 面 積 A _n cm	19. 92	6	42. 21	3. 93E-01	10. 75	10. 07
	間隙比 e	1. 967	7	42. 22	4. 02E-01	10. 50	10.06
載	軸変位量 △ H _n cm	0. 026	8	42. 21	4. 11E-01	10. 27	9.92
荷	体積変化量 Δ $V_{ m n}$ cm	0. 513	9	42. 19	4. 18E-01	10. 10	9. 90
後 ———			10	42. 21	4. 26E-01	9. 91	10. 10

波形の連続記録1)

履歴 曲 線2)

150 100 軸差応力 q (kN/m²) 50 -50 -100 -150 -0. 6 -0.4-0.2 0.00.2 0.40.6軸ひずみ ε。(%)

5サイクル目

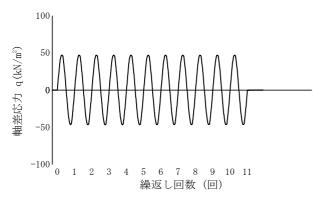
10サイクル目

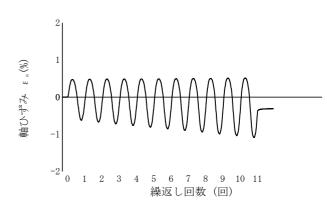
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

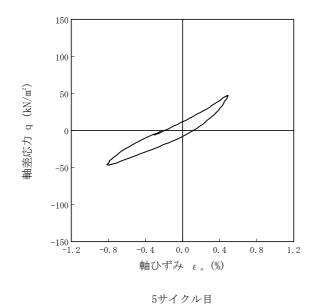
調査件名 知多市新庁舎等設計委託に伴う地盤調査

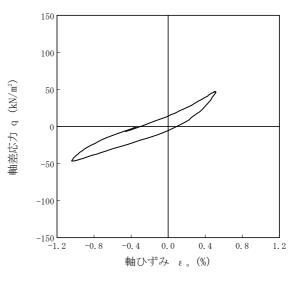
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

験 者 池田 謙信


=	上 質 名 称	シルト(高液性限	界) (畑)	供 試 体 No.	1	載荷段階	12
 繰 返	軸変位量 △ H _n cm	0.026	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率h %
	体積変化量 Δ $V_{\scriptscriptstyle \rm B}$ cm 3		9177	<u> </u>	<u> </u>	等価せん断剛性率 6	腹座侧裂竿 n /0
l	高 さ $H_{\scriptscriptstyle B}$ cm	9. 936	2	46. 89	5. 71E-01	8. 22	10.69
載	外径 (D _n , D_{on})cm	5. 036	3	46. 89	5. 97E-01	7.85	10.74
荷	内 径 $D_{ m in}^{ m 3)}$ cm		4	46. 90	6. 23E-01	7. 53	10.65
試	体 積 $V_{\scriptscriptstyle \rm n}^{\scriptscriptstyle (3)}{ m cm}^{\scriptscriptstyle (3)}$	197. 93	5	46. 87	6. 46E-01	7. 26	10.84
験前	断 面 積 A _n cm ²	19. 92	6	46. 87	6.66E-01	7.04	10. 95
	間隙比 e。	1. 966	7	46. 88	6.85E-01	6. 84	10. 93
載	軸変位量 △Hn cm	0.049	8	46. 88	7. 17E-01	6. 54	10.87
荷	体積変化量 Δ $V_{\rm n}$ cm 3	0. 952	9	46. 86	7. 41E-01	6. 32	10. 94
後 ———			10	46. 83	7. 69E-01	6. 09	10.85


波形の連続記録1)

履歴曲 線2)

10サイクル目

特記事項

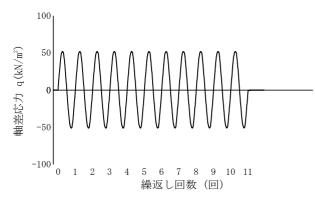
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

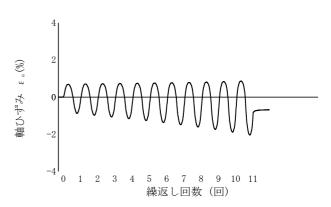
JGS 0 5 4 2

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

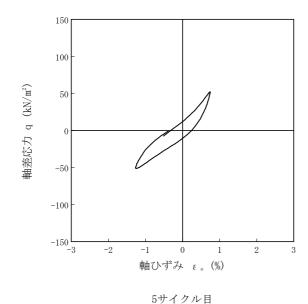
調査件名 知多市新庁舎等設計委託に伴う地盤調査

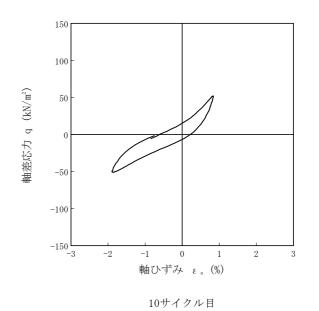
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

験 者 池田 謙信


=	上 質 名 称	シルト(高液性限を	早) (MH)	供 試 体 No.	1	載荷段階	13
	軸変位量 △H _n cm	0.049	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 8%
返	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	0. 952	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 平 n /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 913	2	51. 65	8. 33E-01	6. 20	12. 17
載	外径 (D _n , D_{on})cm	5. 036	3	51. 62	8.78E-01	5. 88	12. 17
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	51. 61	9. 33E-01	5. 53	11. 96
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	197. 49	5	51. 61	9.94E-01	5. 19	11.86
験前	断面積 A _n cm ²	19. 92	6	51. 60	1. 05E+00	4. 90	12.00
	間隙比 e n	1. 959	7	51. 55	1. 11E+00	4. 63	12. 14
載	軸変位量 △ H _n cm	0. 086	8	51. 54	1. 19E+00	4. 32	12. 06
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	1. 672	9	51. 52	1.26E+00	4. 08	12. 08
後			10	51. 48	1.34E+00	3.84	12. 19


波形の連続記録1)

履歴曲 線2)

特記事項

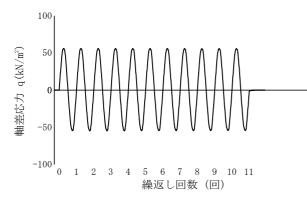
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

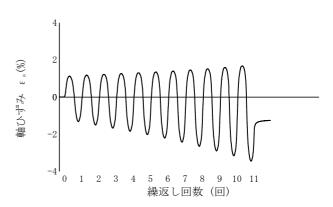
JGS 0 5 4 2

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

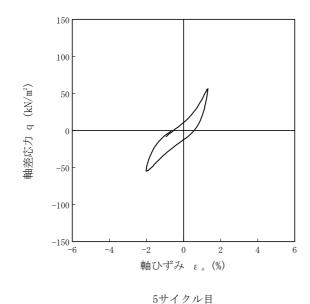
調査件名 知多市新庁舎等設計委託に伴う地盤調査

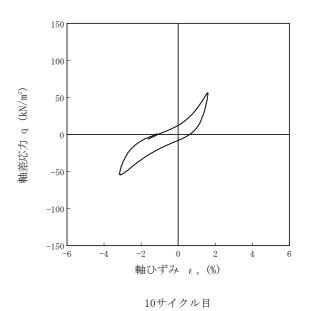
試験年月日


2023年 7月 7日


試料番号(深さ) 7-T3 (3.20~3.70m)

験 者 池田 謙信


=	上 質 名 称	シルト(高液性限	界) (MH)	供 試 体 No.	1	載荷段階	14
	軸変位量 △H _n cm	0.086	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 8 %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	1. 672	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 平 n /0
l	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 876	2	55. 46	1. 33E+00	4. 18	13. 78
載	外径 (D _n , D_{on})cm	5. 037	3	55. 47	1. 43E+00	3.88	13. 27
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	55. 46	1.54E+00	3. 61	12. 84
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	196. 77	5	55. 40	1.65E+00	3. 37	12. 63
験前	断 面 積 A _n cm ²	19. 92	6	55. 37	1.76E+00	3. 15	12. 50
	間隙比 e n	1. 948	7	55. 34	1.89E+00	2. 92	12. 51
載	軸変位量 △ H _n cm	0. 153	8	55. 28	2. 03E+00	2.72	12. 41
荷	体積変化量 $ extstyle \Delta V_{\scriptscriptstyle extstyle n}$ cm $^{\scriptscriptstyle 3}$	2. 979	9	55. 25	2. 19E+00	2. 53	12. 50
後			10	55. 23	2. 36E+00	2. 34	12. 32

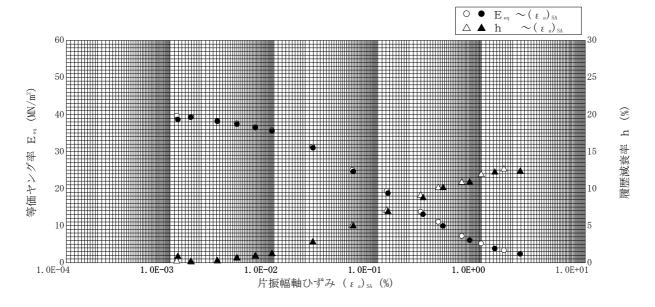

波形の連続記録1)

履歴曲 線2)

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

調査件名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 7日

試料番号(深さ) 7-T3 (3.20~3.70m)

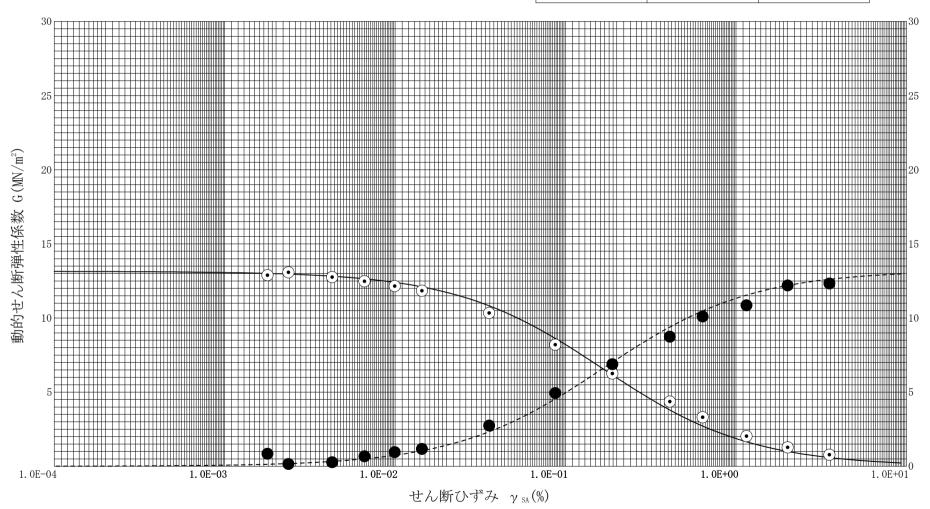
試 験 者 池田 謙信

試	料の状	態1)		乱さない		土粒子の	密度 ρ _s ³	g/cm^3	2. 658
供	試体の作製方	法2)		トリミング法		液性限界	$w_{ t L}$	% 4)	62. 4
土	質 名	称	シルト	(高液性限界) (MH)		塑性限界	$w_{\scriptscriptstyle exttt{P}}$	% 4)	34. 7
供	試体 No.		1	飽 和 方 法		二重負圧法	圧 密	条 件	等方
試	軸方向応え	b σ	$_{\rm ac}$ kN/m^2	250	載	載 荷 波	形		正弦波
	側方向応力(=外圧,内圧) σ	$_{\rm rc}$ kN/m^2	250		載荷周波	数 <i>f</i>	Hz	0. 2
験	背	E u	$_{\rm b}$ ${\rm kN/m^2}$	200	荷	排 水 条	件		非排水
条	軸方向圧密応え	り σ	$_{\rm ac}^{\prime}$ kN/m ²	50	条	1 サイクルデータポイ	ント数		100
件	側方向圧密応え	ካ σ	$_{\rm rc}^{\prime}$ kN/m ²	50	件	載荷段階	i 数		14
117	異方圧密応力と	Ł σ' _{rc} ,	$/ \sigma_{ac}^{ \prime} (=K)^{5)}$		11				

	5 サ	イクル目 〇	Δ	10サイクル目 ● ▲			
載荷段階	片振幅軸ひずみ(ε _s) _{SA} 片振幅せん断ひずみ(γ)_{SA} %	等価ヤング率 $E_{ m eq}$ ${ m MN/m^2}$	履歴減衰率 h %	片振幅軸ひずみ(ε _a) _{SA} 片振幅せん断ひずみ(γ)_{SA} %	等価ヤング率 $E_{ m eq}$ ${ m MN/m^2}$ 等価せん断剛性率 $G_{ m eq}$	履歴減衰率 h %	
1	1. 16E-03	39. 66	0.20	1. 19E-03	38. 66	0.84	
2	1. 60E-03	39. 38	0.08	1. 58E-03	39. 24	0. 15	
3	2. 86E-03	38. 11	0. 20	2. 85E-03	38. 25	0. 27	
4	4. 39E-03	37. 59	0.59	4. 41E-03	37. 41	0.67	
5	6. 60E-03	36. 67	0.85	6. 64E-03	36. 45	0.95	
6	9. 56E-03	35. 77	1. 21	9.60E-03	35. 52	1. 17	
7	2. 36E-02	31. 29	2.75	2. 38E-02	31. 01	2.74	
8	5. 70E-02	25. 05	5. 02	5. 81E-02	24. 60	4.94	
9	1. 22E-01	19. 32	7.06	1. 26E-01	18. 78	6.88	
10	2. 59E-01	13. 78	9. 09	2. 73E-01	13. 08	8.74	
11	3. 83E-01	11.02	10.11	4. 26E-01	9. 91	10. 10	
12	6. 46E-01	7. 26	10.84	7. 69E-01	6. 09	10.85	
13	9. 94E-01	5. 19	11.86	1. 34E+00	3.84	12. 19	
14	1. 65E+00	3. 37	12.63	2. 36E+00	2. 34	12. 32	

特記事項

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。
- 3) 必要に応じて記載する。
- 4) 必要に応じて粘性土の場合は液性限界, 塑性限界, 砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。
- 5) 異方応力状態で試験するときのみ記入する。


 $[1kN/m^2 = 0.0102kgf/cm^2]$ $[1MN/m^2 = 10.2kgf/cm^2]$

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試料番号(深さ) 7-T3 (3.20~3.70m)

1/G=1	$I/G_0+1/$	$(G_{0} \times$	$\gamma_{\rm r})$ γ
$h / h_0 =$	(γ/γ _r)/	(1 +	γ / γ $_{\rm r}$)

G ₀ MN/m ²	γ _r %	H ₀ %	
13. 148	1.662E-1	13. 206	

减衰定数 h (%)

土の三軸試験の供試体作製・設置

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信

					番号と名利	0	0542-2009 地盤	1						
	料	<i>の</i>		態 1)			さない	土		の 窖		$\rho_{\mathrm{s}}^{3)}$	g/cm ³	2.617
:	試	体 の	作	製 2)	迈	は ト	リミング法	液	性	限	界	wL	% ⁴⁾	
	質		各	称	5.	分級され	ıた砂 (SP)	塑	性	限	界	$w_{\scriptscriptstyle extsf{P}}$	% ⁴⁾	
	供	話	t	体	No.		1							
							5. 033							
	直径			cm	5.008									
							5. 025							
	平	均	直	径	$D_{\rm i}$	cm	5.022							
J							10. 178							
		高	5	<u> </u>		cm	10. 178							
]											1			
J	平	均	高	さ	H_{i}	cm	10. 178							
	体			積	$V_{\rm i}$	cm ³	201.61							
,	含	フ.	k	比	$w_{ m i}$	%	38. 0							
	質			量	<i>m</i> i	g	349. 22							
£	湿	潤	密	度	$ ho_{\mathrm{ti}}{}^{3)}$	g/cm ³	1. 732							
	乾	燥	密	度	$\rho_{\mathrm{di}}^{3)}$	g/cm ³	1. 255							+
	間	 B	 貮	比	$e_{{}_{ m i}}^{$		1. 085							
	飽		 口	度	$S_{\rm ri}$ 3)	%	91. 7							+
	相	· 対	密	度	D_{ri} 3)	%								
		軸変位量の測定方法												
Ļ	設量	畳時の				cm	0. 298							
1		□過程の					0.004							
	軸	変	位.	量	$\Delta H_{\rm i}$ 5)	cm	0. 302	-						
ij.	<u> </u>]定方法		軸変位量及び直径の変位量から計算	<u> </u>						
1	設置	 登時の何			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cm ³	10.320	-						
]		i過程の				cm ³	0. 232							
2	体		图 化		Δ V _i ⁵⁾	cm ³	10. 552							
	高	154 2	<u> Ι</u> Δ	<u>=</u>	H ₀	cm	9. 876							
	直			 径	D_0	cm	4. 963							
j	造			<u>-</u> 積	V_0	cm ³								
Ĵ	乾	· 燥	密	恒 度			191.06							
ì			- 名 常	^烃 比	$e_0^{\rho_{d0}^{(3)}}$	g/cm ³	1. 325							
j	間					0/	0.975							
_	相宏	対	密		$D_{\rm r0}^{-3)}$	%	TO 0.4							
≓	容						T304							
Ž.	h	乾燥供試(g	325. 06							
見る	容	器	_ 質 :	量 <u>-</u>		g	71. 98							
É	炉	乾燥	異 質	量	m _s	g	253. 08							

特記事項

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。
- 3) 必要に応じて記載する。
- 4) 必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。
- 5) 設置時の変化と飽和過程および B 値測定過程での変化を合わせる。

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 13日

試料番号(深さ) 7-S4 (3.90~4.90m)

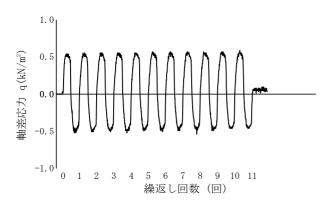
試 験 者 池田 謙信

武/	番方(休さ) 1-54(3.90~4.90m	n)		武 腴 有 他田 謙信
試	料 の 状態"	乱さない		土 粒 子 の 密 度 ρ _s ³⁾ g/cm ³ 2.617
供	試体の作製方法2) 凍	結 トリミング法		液性限界 w i % 4
土	質 名 称 分	級された砂 (SP)		塑性限界 ₩₽ % 4
供	試体 No. 1	飽 和 方 法		二重負圧法 圧 密 条 件 等方
試	軸 方 向 応 力 σ _{ac} kN/m ²	260	載	載 荷 波 形 正弦波
配	側方向応力(=外圧, 内圧) σ _{rc} kN/m ²	260		
験	背 圧 u _b kN/m ²	200	荷	排
条	軸方向圧密応力 σ' _{ac} kN/m ²	60	条	1 サイクルアータホイント数 100
•	側方向圧密応力 σ _{rc} kN/m ²	60	件	 載 荷 段 階 数
件	異方圧密応力比 σ' _{rc} / σ' _{ac} (= K) ⁵			軸 変 位 計 圧密前 cm 0.000
	荷重計の容量 N	1000		の 読 み 圧密後 cm 0.036
	トルク計の容量 ⁶⁾ N·m			排 水 量 圧密前 cm³ 0.00
	大 位置 ①	変位計の位置	圧	E の 読 み 圧密後 cm³ 1.78
試	軸 変 種類 変位計	変 位 計 回転角計 の位置		軸 変 位 量 ΔH。 cm 0.036
武	変 位 数 1			体 積 変 化 量 Δ V。 cm³ 1.78
	位 小 位置 ②			高 さ $H_{\rm c}$ cm 9.840
	変 種類 ギャップセンサー		密	; 外 径 <i>(D。, D。)</i> cm 4.949
験	計 位 数 2			内 径 $D_{\rm ic}^{\rm 6)}$ cm
	回 大 位置			体 積 V _c cm³ 189.28
				断 面 積 A。 cm² 19.24
装	転 位 数		後	乾燥質量 m _s g 253.08
衣	角 小 位置			乾燥密度 ρ _{dc} = m _s /V _c g/cm³ 1.337
	変 種類			間 隙 比 e_{c} 0.957
	計 位 数			相 対 密 度 $D_{\rm rc}$ ³ %
置	金 数 量	リブの位置		E 等方応力増加量 Δσ kN/m² 40.0
	属 製 高さcm リ			間隙水圧増加量 Δu kN/m² 39.2
	ブ 厚 さ cm		間	「 ^m 測定に要した時間
	間隙水圧経路体積変化 cm³ /kN/m²	0.0001	隙	HII D 1L U. 98
ゴム	材質	ラテックス	圧	〒 寺方応万墳加重
スリーブ	「厚 さ mm	0. 5	係	\mathcal{L} \mathcal
圧	高 さ H_0 cm	9.876	数	$egin{array}{c c c c c c c c c c c c c c c c c c c $
密	外 径 <i>(D₀, D₀)</i> cm	4. 963	В	後 測定に要した時間 min 5
前	内 径 D_{i0}^{6} cm			B 値 0.97
特記	事項			
				
			供	
			試体	
			の	1 1 1
			状	Section Property and Company of the
			況	

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を 記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を 記載する。
- 3) 必要に応じて記載する。 4) 必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場 合は最小乾燥密度,最大乾燥密度等を記載する。
- 5) 異方応力状態で試験するときのみ記入する。
- 6) 中空円筒供試体による試験の場合に記入する。

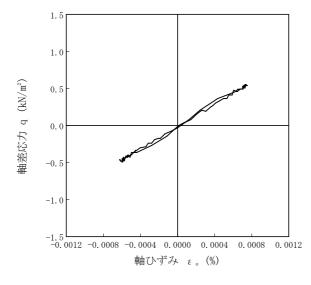
調査件名 知多市新庁舎等設計委託に伴う地盤調査

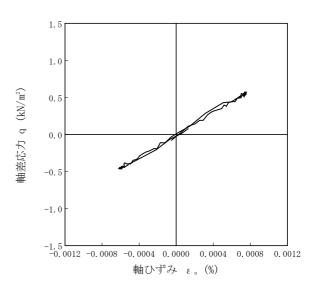
試験年月日


2023年 7月 14日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	1
—— 繰 返	軸変位量 $\Delta H_{\rm n}$ cm 体積変化量 $\Delta V_{\rm n}$ cm ³	0.001 0.024	ナイクル	片振幅軸応力 σ_a kN/m^2	%	等価ヤング率 $E_{ m eq}$ ${ m MN/m^2}$	履歴減衰率 h %
返し	高 さ Hn cm	9. 839	2	0. 54	6. 90E-04	78. 26	1. 67
載	外径 (Dn, Da))cm	4. 949	3	0.54	6. 70E-04	80.60	2.48
荷	内 径 $D_{\scriptscriptstyle m in}^{\scriptscriptstyle 3)}{ m cm}$		4	0. 54	6. 70E-04	80.60	1. 39
試	体 積 $V_{\scriptscriptstyle m h}{}^{\scriptscriptstyle (3)}{ m cm}^{\scriptscriptstyle 3}$	189. 26	5	0. 53	6. 60E-04	80. 30	1.55
験前	断面積 A _n cm ²	19. 24	6	0.54	6. 80E-04	79. 41	2.06
ויוו	間隙比 e	0. 957	7	0.54	6.80E-04	79. 41	1.20
載	軸変位量 △H _n cm	-0.003	8	0. 56	6. 70E-04	83. 58	0.40
荷	体積変化量 △ V _n cm³	-0.061	9	0. 54	6. 60E-04	81. 82	1. 97
後			10	0. 52	6. 60E-04	78. 79	1.50


波形の連続記録1)

0.00100.0005 (%) ⁸ 3 -0.0010 1 2 3 4 5 6 7 8 9 10 11 0 繰返し回数(回)

履歴曲 線2)

5サイクル目

10サイクル目

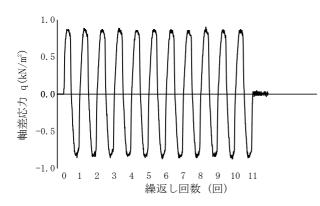
特記事項

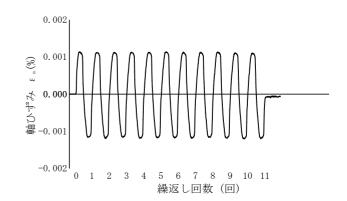
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程

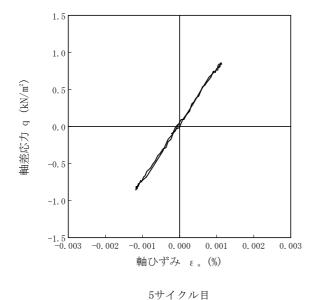
調査件名 知多市新庁舎等設計委託に伴う地盤調査

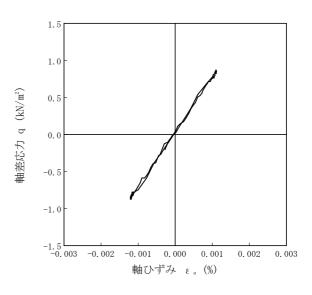
試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	2
	軸変位量 △H _n cm	-0.003	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm n}$ cm $^{\scriptscriptstyle 3}$	-0.061	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価也人断剛性率 6	限 座 枫 最 辛 n 70
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 843	2	0.87	1. 13E-03	76. 99	1.00
載	外径 (Dn, Dan)cm	4. 949	3	0.87	1.14E-03	76. 32	0.77
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	0.87	1.15E-03	75. 65	0.96
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	189. 34	5	0.86	1.14E-03	75. 44	0. 29
験前	断 面 積 A _n cm ²	19. 24	6	0.88	1.15E-03	76. 52	0.66
	間隙比 e n	0. 958	7	0.87	1.15E-03	75. 65	0.64
載	軸変位量 △ H _n cm	-0.002	8	0.86	1. 13E-03	76. 11	0.76
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{n}}$ cm $^{\scriptscriptstyle 3}$	-0.037	9	0.88	1.12E-03	78. 57	0.73
後			10	0.88	1. 15E-03	76. 52	0.71


波形の連続記録1)

履歴曲線의

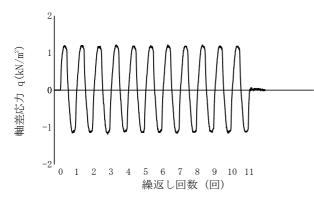
10サイクル目

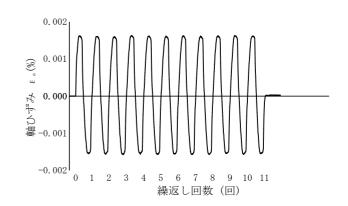
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

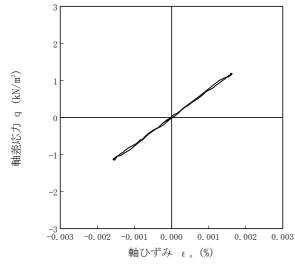
調査件名 知多市新庁舎等設計委託に伴う地盤調査

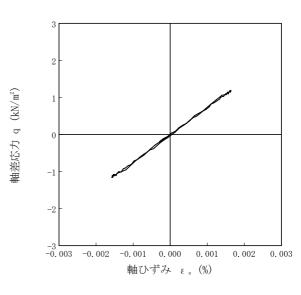
試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	3
	軸変位量 △H _n cm	-0.002	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 8 %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm n}$ cm $^{\scriptscriptstyle 3}$	-0.037	9177	<u> </u>	<u> </u>	等価セル断剛性率 <i>G</i> eq	限 腔 侧 長 竿 n 70
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 842	2	1. 18	1.58E-03	74. 68	0.52
載	外径 (D _n , D_{on})cm	4. 949	3	1.20	1. 57E-03	76. 43	0.52
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	1.18	1.58E-03	74. 68	0.36
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	189. 32	5	1. 18	1.58E-03	74. 68	0.62
験前	断 面 積 A _n cm ²	19. 24	6	1. 18	1.57E-03	75. 16	0.28
	間隙比 e n	0. 958	7	1.20	1.60E-03	75. 00	0.45
載	軸変位量 △ H _n cm	-0.001	8	1. 18	1.57E-03	75. 16	0.36
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{n}}$ cm $^{\scriptscriptstyle 3}$	-0.024	9	1. 19	1.57E-03	75. 80	0.41
後			10	1.18	1. 59E-03	74. 21	0.47


波形の連続記録1)

履歴曲線의

5サイクル目

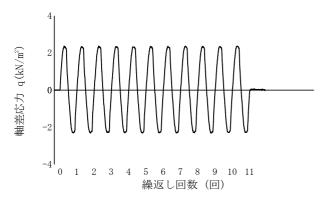
10サイクル目

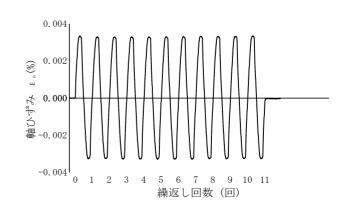
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

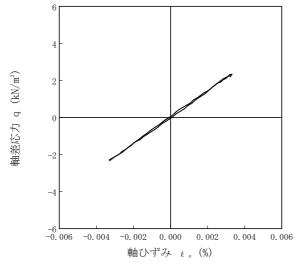
調査件名 知多市新庁舎等設計委託に伴う地盤調査

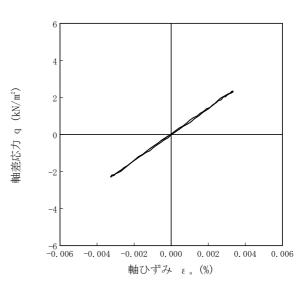
試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	4
—— 繰 返	軸変位量 Δ H _n cm 体積変化量 Δ V _n cm ³	-0. 001 -0. 024	サイクル	片振幅軸応力 σ_a kN/m^2	0/0	等価ヤング率 $E_{\rm eq}$ ${ m MN/m^2}$ ${ m $rac{4m^2 { m Km}}{ m MN}}$	履歴減衰率 8%
返し	高 さ Hn cm	9. 841	2	2. 35	3. 27E-03	71.87	0. 47
載	外径 (D _n , D_{on})cm	4. 949	3	2. 35	3. 26E-03	72.09	0.46
荷	内 径 $D_{\scriptscriptstyle m in}^{\scriptscriptstyle (3)}{ m cm}$		4	2. 35	3. 27E-03	71.87	0. 43
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	189. 30	5	2. 35	3. 24E-03	72. 53	0. 43
験前	断面積 A _n cm ²	19. 24	6	2. 35	3. 29E-03	71. 43	0. 21
ויה	間隙比 e	0. 957	7	2. 36	3. 30E-03	71. 52	0.47
載	軸変位量 △ H _n cm	0.000	8	2. 36	3. 29E-03	71. 73	0.33
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	0.000	9	2.36	3. 28E-03	71. 95	0.47
後 			10	2.34	3. 29E-03	71. 12	0.21


波形の連続記録1)

履歴曲線의

5サイクル目

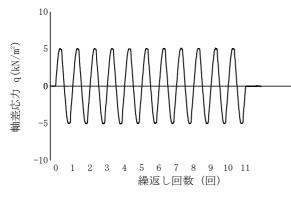
10サイクル目

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

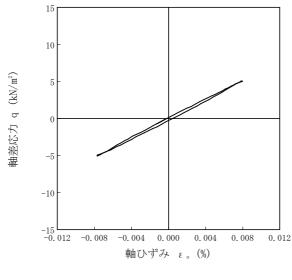
調査件名 知多市新庁舎等設計委託に伴う地盤調査

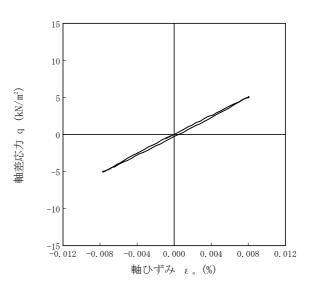
試験年月日


2023年 7月 14日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	5
	軸変位量 △ H _n cm	0.002	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m ²	履歴減衰率 h %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm B}$ cm $^{\scriptscriptstyle 3}$	0.037	9177	井振幅せん断応力 τ₃ ΚΙΥ/Ⅲ	<u> 片振幅せん断ひずみ(γ)</u> s₁	等価セル斯剛性率 <i>G</i> 。。	版正概数平 <i>和</i> /0
l	高 さ $H_{\scriptscriptstyle B}$ cm	9. 838	2	5. 12	7. 73E-03	66. 24	2. 15
載	外径 (Dn, Da))cm	4. 949	3	5. 12	7. 76E-03	65. 98	1.83
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	5. 14	7. 79E-03	65. 98	1. 55
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	189. 24	5	5. 09	7. 74E-03	65. 76	1. 56
験前	断面積 A _n cm ²	19. 24	6	5. 12	7.86E-03	65. 14	1.49
נינו	間隙比 e n	0. 957	7	5. 14	7. 79E-03	65. 98	1.53
載	軸変位量 △H _n cm	0.002	8	5. 16	7.84E-03	65.82	1. 34
荷	体積変化量 Δ $V_{\scriptscriptstyle \rm R}$ cm $^{\scriptscriptstyle 3}$	0. 037	9	5. 14	7.86E-03	65. 39	1.64
後			10	5. 16	7.86E-03	65. 65	1.51


波形の連続記録1)

0.0100.005 ε a (%) 軸ひずみ 0.000 -0.009 -0.010 0 1 2 3 4 5 6 7 8 9 10 11 繰返し回数(回)

履歴曲線의

5サイクル目

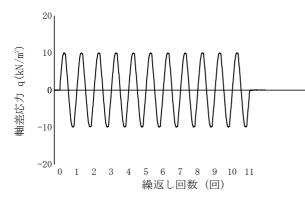
特記事項

10サイクル目

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

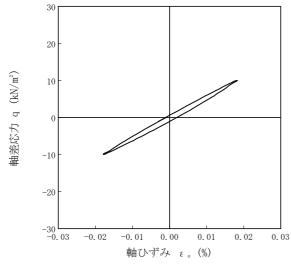
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 14日

試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	6
	軸変位量 △H _n cm	0.001	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} MN/m ²	履歴減衰率 8 %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	0.012	9177	<u> </u>	<u> </u>	等価セル斯剛性率 <i>G</i> eq	限 座 枫 最 辛 n 70
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 839	2	10. 07	1. 78E-02	56. 73	4.35
載	外径 (D _n , D_{on})cm	4. 949	3	10. 09	1. 78E-02	56. 78	4. 12
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	10. 07	1. 79E-02	56. 26	3.81
試	$oxed{ 体 $	189. 27	5	10. 09	1. 79E-02	56. 24	3.66
験前	断面積 A _n cm ²	19. 24	6	10. 10	1.80E-02	56. 17	3.62
יים	間隙比 e n	0. 957	7	10. 09	1.80E-02	56. 12	3.51
載	軸変位量 △ H _n cm	0.003	8	10. 07	1.80E-02	56. 01	3. 47
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	0.061	9	10. 10	1.81E-02	55. 89	3.35
後			10	10. 09	1.81E-02	55. 72	3.34

波形の連続記録1)

0.020.01 ε a (%) 軸ひずみ 0.00 -0.01-0.02 2 3 5 7 0 1 4 6 8 9 10 11 繰返し回数(回)

履歴曲 線2)

30 20 軸差応力 q (kN/m²) 10 -10 -20 -30 └─ -0. 03 -0.02-0.010.00 0.01 0.02 0.03 軸ひずみ ε。(%)

5サイクル目

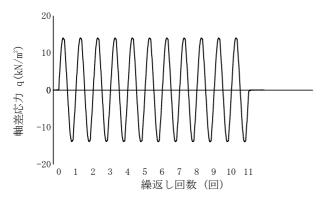
10サイクル目

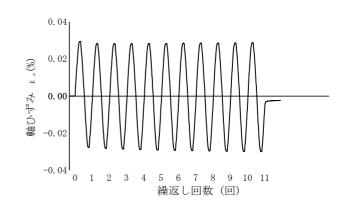
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

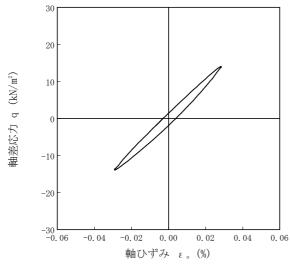
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載 荷 段 階	7
	軸変位量 △H _n cm	0.003	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0.061	9177	-	<u> </u>	等価せん断剛性率 <i>G</i> 。。	废正枫农平 1 /0
し	高 さ $H_{\scriptscriptstyle n}$ cm	9. 837	2	14. 11	2.82E-02	50. 02	6.24
載	外径 (D _n , D_{on})cm	4. 949	3	14. 11	2.83E-02	49. 95	5. 75
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	14. 09	2.84E-02	49. 61	5.63
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	189. 22	5	14. 14	2.87E-02	49. 35	5. 37
験前	断 面 積 A _n cm ²	19. 24	6	14. 12	2.87E-02	49. 23	5. 29
נים	間隙比 e 。	0. 957	7	14. 11	2.88E-02	49. 04	5. 24
載	軸変位量 △ H _n cm	0.004	8	14. 11	2.90E-02	48. 66	5.08
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0.073	9	14. 14	2. 90E-02	48. 71	5. 07
後			10	14. 11	2. 92E-02	48. 34	4.88

波形の連続記録1)

履歴曲線의

20 軸差応力 q (kN/m²) 10 -10 -20 -30 └─ -0. 06 -0.04-0.020.00 0.02 0.040.06 軸ひずみ ε。(%)

5サイクル目

10サイクル目

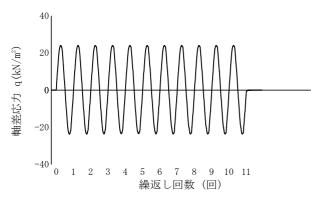
特記事項

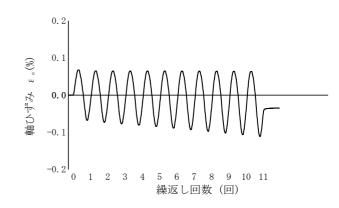
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

30

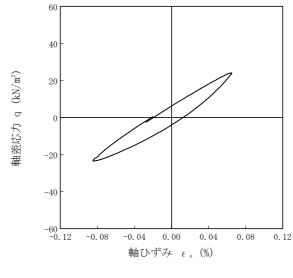
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂 (SP)		供 試 体 No.	1	載荷段階	8
繰返し載荷試験前	軸変位量 △ H _n cm	0.006	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率 $E_{ m eq}$ ${ m MN/m^2}$ ${ m Substitute}$ ${ m Geq}$	履歴減衰率 h %
	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	0. 110		<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0		
	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 834	2	24. 13	6.88E-02	35. 08	10.72
	外径 (D _n , D_{on})cm	4. 949	3	24. 07	7. 02E-02	34. 29	10. 52
	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	24. 05	7. 20E-02	33. 39	10. 34
	$oxed{ 体 $	189. 17	5	24. 03	7.42E-02	32. 39	10. 19
	断面積 A _n cm ²	19. 24	6	24. 08	7.64E-02	31. 53	10. 22
	間隙比 e n	0. 956	7	24. 10	7.82E-02	30. 84	10. 20
載荷後	軸変位量 △ H _n cm	0.012	8	24. 07	8. 01E-02	30. 05	10. 26
	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	0. 232	9	24. 11	8. 23E-02	29. 28	10. 29
			10	24. 08	8. 51E-02	28. 29	10. 29

波形の連続記録1)

履歴曲線의

-60 -0. 12 -0.08-0.040.00 軸ひずみ ε。(%)

5サイクル目

10サイクル目

0.04

0.08

0.12

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

60

40

20

-20

-40

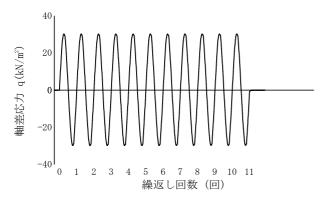
軸差応力 q (kN/m²)

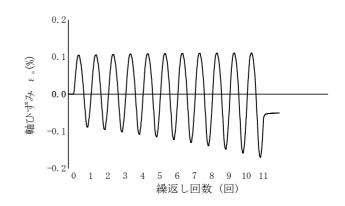
JGS 0 5 4 2

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

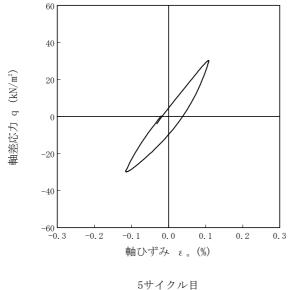
調査件名 知多市新庁舎等設計委託に伴う地盤調査

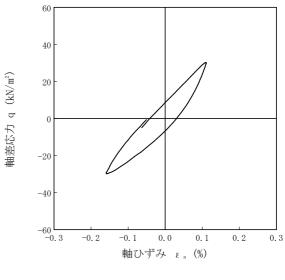
試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂 (SP)		供 試 体 No.	1	載 荷 段 階	9
繰返し載荷試験前	軸変位量 △ H _n cm	0. 026	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h. %
	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 500		<u> </u>	<u> </u>	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 竿 n /0
	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 814	2	30. 41	9. 98E-02	30. 49	11. 59
	外径 (D _n , D_{on})cm	4. 949	3	30. 36	1. 03E-01	29. 47	11.45
	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	30. 37	1. 07E-01	28. 38	11. 36
	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	188. 78	5	30. 37	1. 11E-01	27. 39	11.50
	断面積 A _n cm ²	19. 24	6	30. 39	1. 15E-01	26. 45	11. 56
	間隙比 e n	0. 952	7	30. 33	1. 18E-01	25. 60	11.75
載荷後	軸変位量 △ H _n cm	0.038	8	30. 34	1. 23E-01	24. 66	12.05
	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	0. 720	9	30. 33	1. 28E-01	23. 72	12. 16
			10	30. 33	1.33E-01	22. 77	12. 33


波形の連続記録1)

履歴曲線의

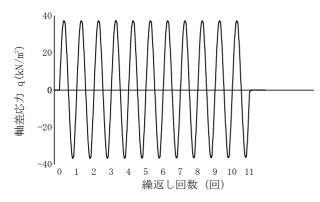
10サイクル目

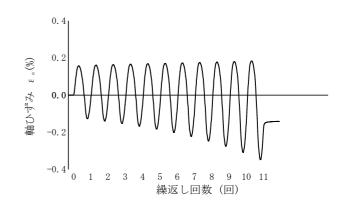
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

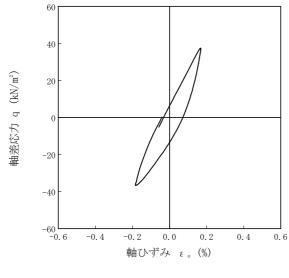
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	10
	軸変位量 △H _n cm	0. 055	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 8%
返	体積変化量 Δ $V_{\scriptscriptstyle \rm n}$ cm $^{\scriptscriptstyle 3}$	1. 050	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 平 n /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 785	2	37. 43	1.49E-01	25. 20	13. 37
載	外径 (D _n , D_{on})cm	4. 949	3	37. 42	1.57E-01	23. 89	13. 21
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	37. 43	1.65E-01	22. 66	13. 23
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle (3)}{ m cm}^{\scriptscriptstyle 3}$	188. 23	5	37. 40	1.74E-01	21. 52	13. 39
験前	断 面 積 A _n cm ²	19. 24	6	37. 34	1.84E-01	20. 29	13. 72
	間隙比 e n	0. 946	7	37. 32	1.96E-01	19. 00	13. 88
載	軸変位量 △ H _n cm	0.070	8	37. 32	2. 09E-01	17. 86	14. 21
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{n}}$ cm $^{\scriptscriptstyle 3}$	1. 343	9	37. 26	2. 23E-01	16. 69	14. 57
後			10	37. 26	2. 40E-01	15. 50	14. 95

波形の連続記録1)

履歴曲線의

60 40 軸差応力 q (kN/m²) 20 -20 -40 -60 -0. 6 -0.4-0.2 0.00.2 0.40.6軸ひずみ ε。(%)

5サイクル目

10サイクル目

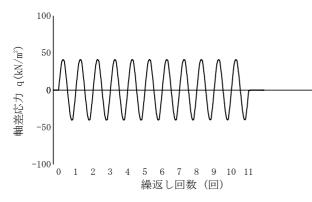
特記事項

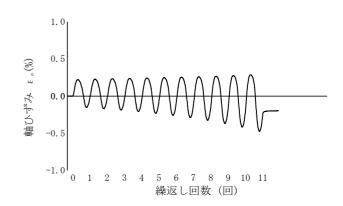
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

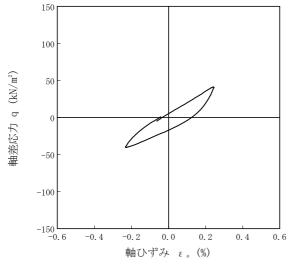
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日

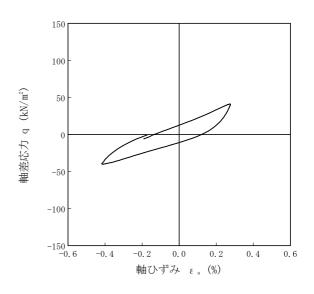

2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載 荷 段 階	11
	軸変位量 △ H _n cm	0.070	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 8%
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	1. 343	9177	<u> </u>	<u> </u>	等価セル斯剛性率 <i>G</i> eq	限座侧系竿 n /0
し	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 770	2	41. 20	1. 97E-01	20. 90	14. 70
載	外径 (D _n , D_{on})cm	4. 949	3	41. 23	2. 09E-01	19. 77	14. 51
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	41. 15	2. 21E-01	18. 64	14. 47
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	187. 94	5	41. 17	2. 36E-01	17. 46	14. 45
験前	断面積 A _n cm ²	19. 24	6	41. 13	2. 51E-01	16. 38	14. 59
נים	間隙比 e n	0. 943	7	41. 07	2. 70E-01	15. 23	14. 79
載	軸変位量 △ H _n cm	0.096	8	41. 02	2. 91E-01	14. 11	14.89
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	1. 831	9	40. 96	3. 13E-01	13. 10	15. 24
後 			10	40. 97	3. 43E-01	11. 93	15. 45

波形の連続記録1)



履歴 曲 線2)

5サイクル目

10サイクル目

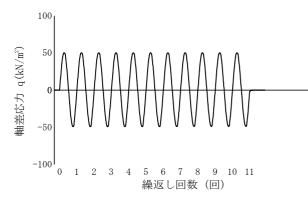
特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

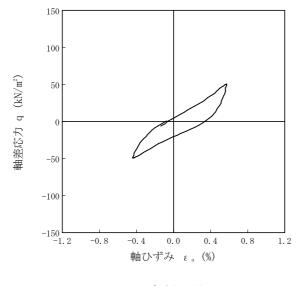
調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日


2023年 7月 14日

試料番号(深さ) 7-S4 (3.90~4.90m)

験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載 荷 段 階	12
	軸変位量 △ H _n cm	0. 129	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率 h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	2. 466	9177	-	<u> </u>	等価せん断剛性率 <i>G</i> 。。	废正枫农平 1 /0
l	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 711	2	50. 32	4. 16E-01	12. 11	16. 18
載	外径 (D _n , D_{on})cm	4. 949	3	50. 36	4. 41E-01	11. 43	15. 46
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	50. 28	4. 73E-01	10. 63	15. 19
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	186. 81	5	50. 26	5. 04E-01	9. 96	14. 91
験前	断面積 A _n cm ²	19. 24	6	50. 23	5. 33E-01	9. 43	14. 98
נים	間隙比 e n	0. 932	7	50. 26	5. 76E-01	8. 73	14. 62
載	軸変位量 △ H _n cm	0. 168	8	50. 16	6. 15E-01	8. 15	14.64
荷	体積変化量 $ extstyle \Delta V_{\scriptscriptstyle extstyle n}$ cm $^{\scriptscriptstyle 3}$	3. 198	9	50. 15	6. 59E-01	7. 61	14. 66
後			10	50. 15	7. 09E-01	7. 08	14. 51

波形の連続記録1)

1.0 0.5 軸ひずみ E 3 (%) 0.0 -0.5 -1.00 2 3 4 5 6 7 8 9 10 11 1 繰返し回数(回)

履歴曲 線2)

150 100 軸差応力 q (kN/m²) 50 -50 -100 -150 -1. 2 -0.8 -0.40.00.40.8 1.2 軸ひずみ ε。(%)

5サイクル目

10サイクル目

特記事項

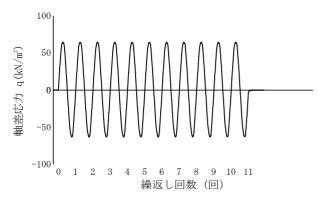
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

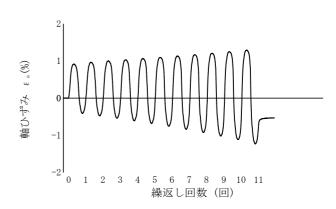
JGS 0 5 4 2

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

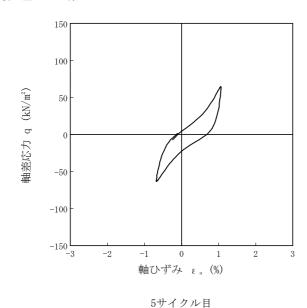
調査件名 知多市新庁舎等設計委託に伴う地盤調査

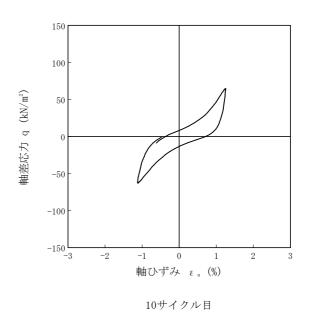
試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	13
	軸変位量 △H _n cm	0. 209	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} M N /m²	履歴減衰率h %
返	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	3. 979	9177	<u> </u>	<u> 井振幅せん断ひずみ(y) s₁</u> /0	等価セル斯剛性率 <i>G</i> eq	限 座 侧 表 平 n /0
し	高 さ $H_{\scriptscriptstyle { m h}}$ cm	9. 631	2	64. 49	7. 14E-01	9.04	15. 70
載	外径 (D _n , D_{on})cm	4. 950	3	64. 48	7.68E-01	8. 40	14.80
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	64. 48	8.14E-01	7. 92	14. 26
試	体 積 $V_{\scriptscriptstyle m n}{}^{\scriptscriptstyle 3)}{ m cm}^{\scriptscriptstyle 3}$	185. 30	5	64. 45	8.71E-01	7. 40	13. 87
験前	断 面 積 A _n cm ²	19. 24	6	64. 48	9. 20E-01	7. 01	13. 70
	間隙比 e n	0. 916	7	64. 40	9. 78E-01	6. 59	13. 60
載	軸変位量 △ H _n cm	0. 250	8	64. 41	1.04E+00	6. 18	13. 29
荷	体積変化量 $ extstyle extstyle U_{ extstyle n} cm^3$	4. 773	9	64. 40	1.11E+00	5. 81	13. 12
後			10	64. 33	1. 18E+00	5. 45	12.87


波形の連続記録1)

履歴曲 線2)

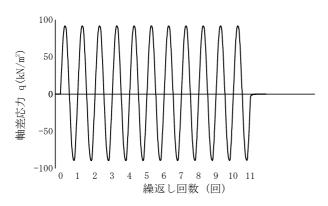
特記事項

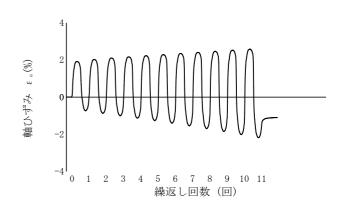
- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

地盤材料の変形特性を求めるための繰返し三軸試験 / 載荷過程 = 土の変形特性を求めるための中空円筒供試体による繰返しねじりせん断試験 (波形記録

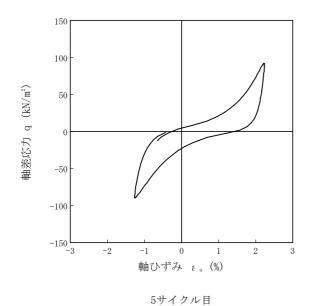
調査件名 知多市新庁舎等設計委託に伴う地盤調査

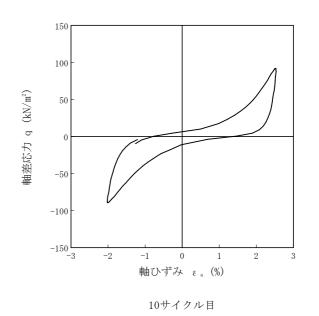
試験年月日


2023年 7月 14日


試料番号(深さ) 7-S4 (3.90~4.90m)

試 験 者 池田 謙信


=	上 質 名 称	分級された砂	(SP)	供 試 体 No.	1	載荷段階	14
	軸変位量 △H _n cm	0. 306	サイクル	片振幅軸応力 σ。 kN/m²	片振幅軸ひずみ (ε _s) _{SA} %	等価ヤング率E _{eq} MN/m ²	履歴減衰率 8 %
返	体積変化量 Δ $V_{\scriptscriptstyle \rm h}$ cm $^{\scriptscriptstyle 3}$	5. 835	9177	<u> </u>	<u> </u>	等価セル断剛性率 <i>G</i> eq	腹座侧套竿 n /0
l	高 さ $H_{\scriptscriptstyle {\rm h}}$ cm	9. 534	2	91. 73	1. 44E+00	6. 36	13. 58
載	外径 (D _n , D_{on})cm	4. 950	3	91. 68	1. 55E+00	5. 92	12. 58
荷	内 径 $D_{\scriptscriptstyle \mathrm{in}}^{\scriptscriptstyle (3)}$ cm		4	91. 70	1. 65E+00	5. 57	11. 93
試	$oxed{ 体 $	183. 45	5	91.62	1. 74E+00	5. 26	11. 48
験前	断面積 A _n cm ²	19. 24	6	91. 58	1.84E+00	4. 98	11. 15
	間隙比 e n	0.897	7	91. 58	1. 94E+00	4.72	10.82
載	軸変位量 △ H _n cm	0. 377	8	91. 57	2. 04E+00	4. 48	10. 50
荷	体積変化量 Δ $V_{\scriptscriptstyle \mathrm{B}}$ cm $^{\scriptscriptstyle 3}$	7. 178	9	91. 52	2. 15E+00	4. 26	10. 53
後			10	91. 54	2. 27E+00	4.04	10. 31


波形の連続記録1)

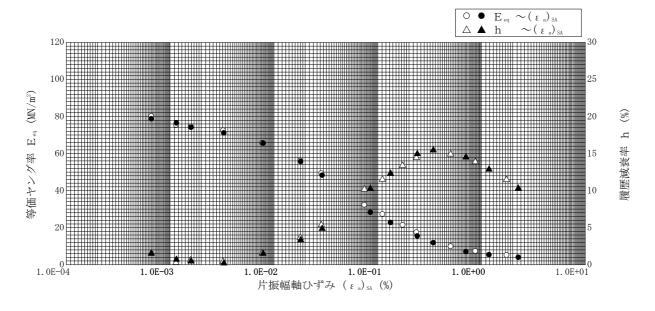
履歴曲線의

特記事項

- 1)繰返し載荷中の軸荷重と軸変位,あるいはねじり力と回転角の連続記録を図示するか,または別途添付してもよい。2)軸荷重と軸変位,あるいはねじり力と回転角の履歴曲線を図示するか,または別途添付してもよい。必要に応じて5,10回目以外の繰返し載荷における履歴曲線も添える。3)中空円筒供試体による試験のときのみ記入する。

JGS 0542

調査件名 知多市新庁舎等設計委託に伴う地盤調査


試験年月日 2023年 7月 14日

試料番号(深さ) 7-S4 (3.90~4.90m)

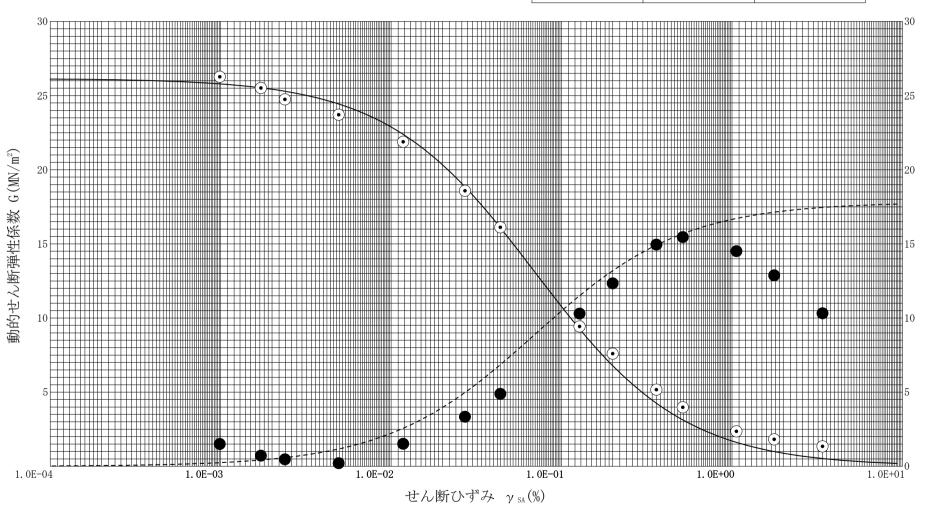
試 験 者 池田 謙信

試	料の	状 į	克 1)		乱さない		土	粒 子	の密	度	ρ	s ³⁾ 8	g/cm ³	2.617
供	試体の作り	製方法	去2)	凍	結 トリミング法		液性	性限界			wL	%	4)	
土	質 名	i	尔	分	級された砂 (SP)		塑性	上限界			$w_{\scriptscriptstyle extsf{P}}$	%	4)	
供	試体 No.			1	飽 和 方 法		二重	負圧法		圧	密	条	件	等方
試	軸方向	応 力	$\sigma_{\rm ac}$	kN/m^2	260	- 載	載	荷	波	形				正弦波
•	側方向応力(=外)	王,内圧)	$\sigma_{\rm rc}$	kN/m^2	260	収	載	荷 周	波	数	f		Hz	0. 2
験	背	圧	u _b	kN/m^2	200	荷	排	水	条	件				非排水
条	軸方向圧密	孫応力	$\sigma_{\rm ac}^{\prime}$	kN/m^2	60	条	1サ/	イクルデー	タポイン	/卜数				100
件	側方向圧密	孫応力	$\sigma_{\rm rc}^{\prime}$	kN/m^2	60	件	載	荷 段	階	数				14
111	異方圧密点	力比	$\sigma_{\rm rc}^{\prime}$ / $\sigma_{\rm rc}^{\prime}$	$\sigma'_{ac} (=K)^{5}$		1+								
				F 4	и. П 🔘 🐧					104	- 2	ו ל	. 🗆	

	5 サ	イクル目 〇	\triangle		トイクル目 ●	A
載荷段階	片振幅軸ひずみ(ε _s) _{SA} ο/ _o	等価ヤング率 E _{eq} MN /m ²	履歴減衰率 h %	片振幅軸ひずみ(ε _a) _{SA} %	等価ヤング率 E_{eq} MN/m²	履歴減衰率 h %
	片振幅せん断ひずみ (γ)sx /0	等価せん断剛性率 G。	腹座峽衣芋 n /0	井振幅せん断ひずみ (γ)sA	等価也心断剛性率 G	极定概数平 <i>机</i> /0
1	6. 60E-04	80. 30	1.55	6. 60E-04	78. 79	1. 50
2	1. 14E-03	75. 44	0. 29	1. 15E-03	76. 52	0.71
3	1. 58E-03	74. 68	0.62	1. 59E-03	74. 21	0. 47
4	3. 24E-03	72. 53	0.43	3. 29E-03	71. 12	0.21
5	7. 74E-03	65. 76	1.56	7.86E-03	65. 65	1.51
6	1. 79E-02	56. 24	3. 66	1.81E-02	55. 72	3. 34
7	2. 87E-02	49. 35	5. 37	2. 92E-02	48. 34	4. 88
8	7. 42E-02	32. 39	10. 19	8. 51E-02	28. 29	10. 29
9	1. 11E-01	27. 39	11.50	1. 33E-01	22. 77	12. 33
10	1. 74E-01	21. 52	13. 39	2. 40E-01	15. 50	14. 95
11	2. 36E-01	17. 46	14. 45	3. 43E-01	11. 93	15. 45
12	5. 04E-01	9. 96	14. 91	7. 09E-01	7. 08	14. 51
13	8. 71E-01	7. 40	13.87	1. 18E+00	5. 45	12. 87
14	1. 74E+00	5. 26	11.48	2. 27E+00	4. 04	10. 31

特記事項

- 1) 試料の採取方法, 試料の状態(塊状, 凍結, ときほぐされた)等を記載する。
- 2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。
- 3) 必要に応じて記載する。
- 4) 必要に応じて粘性土の場合は液性限界, 塑性限界, 砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。
- 5) 異方応力状態で試験するときのみ記入する。


 $[1kN/m^2 = 0.0102kgf/cm^2]$ $[1MN/m^2 = 10.2kgf/cm^2]$

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試料番号(深さ) 7-S4 (3.90~4.90m)

 $1 / G = 1 / G_0 + 1 / (G_0 \times \gamma_r) \gamma$ $h / h_0 = (\gamma / \gamma_r) / (1 + \gamma / \gamma_r)$

$G_0 MN/m^2$	γ _r %	H _o %
26. 153	7.000E-2	17.816

減衰定数 h (%)

JΙS	A	1 2 2 3
JGS		0 1 3 5

土の細粒分含有率試験

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 21日

試 験 者 石原 聖子

					P 1 10/2 D	口心、王 1	
試	料 番 号(深 さ)	1-P8 (8. 1	5∼8.45m)				
	容 器 No.	S30	S31				
含	<i>m</i> _a g	158. 68	146. 35				
	$m_{ ext{ iny b}}$ g	143. 50	133. 12				
水	m_{\circ} g	48. 05	47. 75				
比	w %	15. 9	15. 5				
	平 均 値 w %	15.	7				
試	容 器 No.	S2	25				
料 の	(試料+容器) 質量 g	232. 1	3				
炉 乾	容器質量 g	47. 7	71				
燥質	試料の質量mg	184. 42					
量	試料の炉乾燥質量 m。g	159. 3	39				
<u></u>	ふ る い	425μ m	$75~\mu$ m	$425~\mu$ m	75μ m	$425~\mu$ m	75 μ m
ぷる	容 器 No.						
٧١	(炉乾燥試料+容器) 質量 g	97. 57	39. 78				
残	容器質量 g						
留分	炉乾燥試料質量 g	97. 57	39. 78				
	組ふるいに残留した 炉 乾 燥 質 量 m_{0s} g	137. 3	35				
細	粒分含有率 F。%	13.	8				
試米	いる いる いる いる いる いる いる いる いる いる いる いる いる い	9.	5				

$$m_{s} = \frac{m}{1 + w/100}$$

$$F_{\rm c} = \frac{m_{\rm s} - m_{\rm 0s}}{m_{\rm s}} \times 100$$

JIS A 1223 JGS 0135

土の細粒分含有率試験

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 21日

試 験 者 石原 聖子

1 1	料番号(深さ)	2-P7 (7.15	$5\sim$ 7.45m)	2-P8 (8.15	$5\sim$ 8.45m)		
	容 器 No.	S32	S33	S34	S35		
ì	<i>m</i> _a g	183. 80	179. 48	168. 27	180.34		
	т ь g	162. 94	159. 51	149. 29	159. 59		
•	m_{\circ} g	47. 70	47. 95	48. 31	48. 02		
	w %	18. 1	17. 9	18. 8	18. 6		
	平 均 値 w %	18.	0	18.	7		
試 料	容 器 No.	S2	6	S2	7		
	(試料+容器) 質量 g	277. 3	2	263. 1	3		
島	容器質量g	47. 6	8	47. 5	4		
	試料の質量加度	229. 6	4	215. 5	9		
	試料の炉乾燥質量 m。g	194. 6	1	181. 6	3		
	ふ る い	$425~\mu$ m	75 μ m	425μ m	75 μ m	$425~\mu$ m	75 μ m
	容 器 No.						
	(炉乾燥試料+容器) 質量 g	123. 38	45. 12	108. 70	31. 86		
	容器質量g						
	炉乾燥試料質量 g	123. 38	45. 12	108. 70	31. 86		
	組ふるいに残留した 炉 乾 燥 質 量 m_{0s} g	168. 5	0	140. 5	6		
*	並 分 含 有 率 F。%	13.	4	22.	6		
米	斗の最大粒径 mm	1	9	9.	5		

$$m_s = \frac{m}{1 + w/100}$$

$$F_{\rm c} = \frac{m_{\rm s} - m_{\rm 0s}}{m_{\rm s}} \times 100$$

JIS A 1223 JGS 0135

土の細粒分含有率試験

調査件名 知多市新庁舎等設計委託に伴う地盤調査

試験年月日 2023年 7月 21日

試 験 者 石原 聖子

					八 次 日	和原 至丁	
試	料番号(深さ)	6-P7 (7.15	\sim 7.35m)				
	容 器 No.	S36	S37				
含	m _a g	174. 88	196. 98				
	т ь g	145. 79	163. 90				
水	<i>m</i> ∘ g	47. 84	47. 83				
比	w %	29. 7	28. 5				
	平 均 値 w %	29.	1				
試料の炉乾燥質	容 器 No.	S2	8				
	(試料+容器) 質量 g	265. 0	5				
	容器質量 g	47. 8	3				
	試料の質量mg	217. 2	2				
量	試料の炉乾燥質量 m。g	168. 2	6				
ふ	ふ る い	425μ m	$75~\mu$ m	$425~\mu$ m	75μ m	$425~\mu$ m	$75~\mu$ m
ふる	容 器 No.						
٧١	(炉乾燥試料+容器) 質量 g	31. 23	111. 61				
残	容器質量 g						
留分	炉乾燥試料質量 g	31. 23	111.61				
	組ふるいに残留した 炉 乾 燥 質 量 m_{0s} g	142.8	4				
H 3	粒 分 含 有 率 F。%	15.	1				
式 米	斗の最大粒径 mm	9.	5				

$$m_s = \frac{m}{1 + w/100}$$

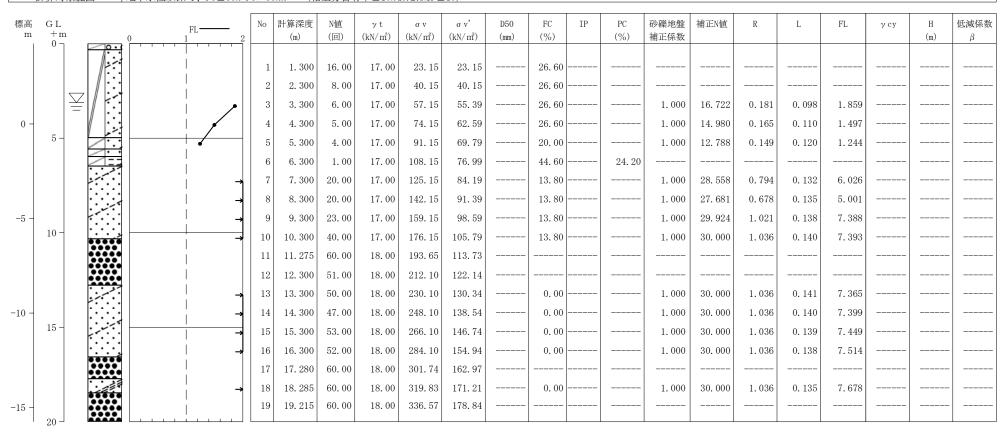
$$F_{\rm c} = \frac{m_{\rm s} - m_{\rm 0s}}{m_{\rm s}} \times 100$$

JΙS	A	1 2 2 3
JGS		0 1 3 5

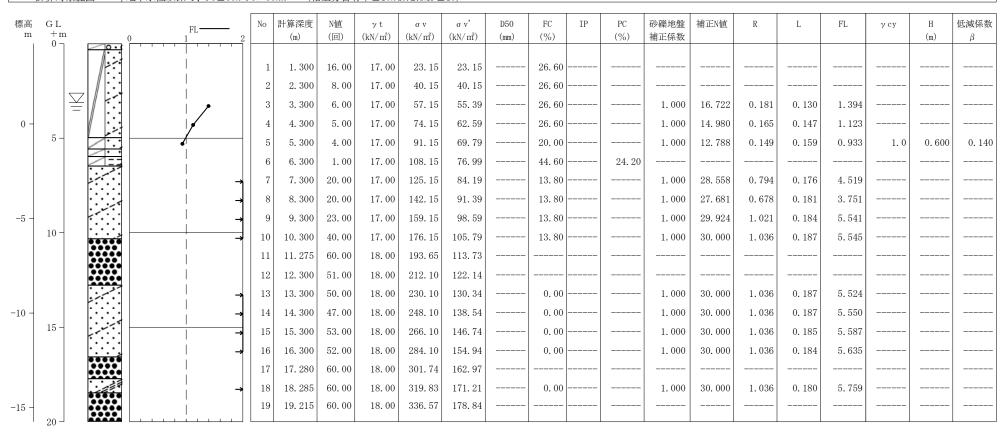
土の細粒分含有率試験

調査件名 知多市新庁舎等設計委託に伴う地盤調査

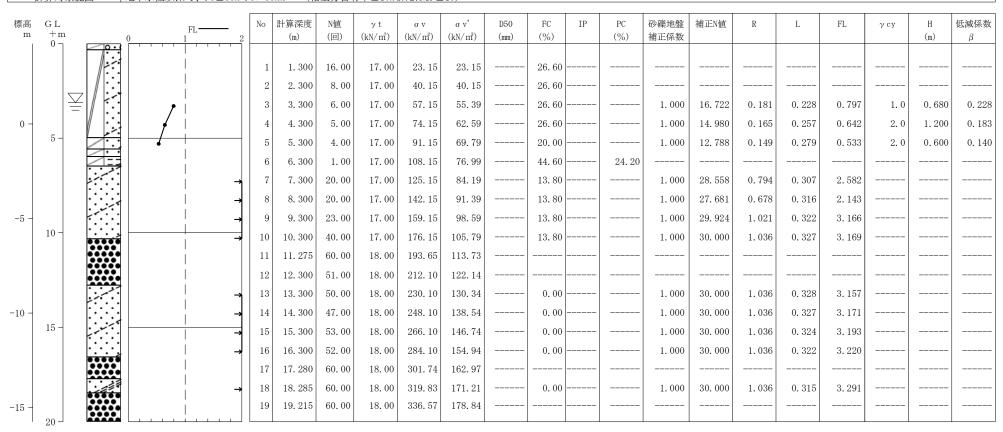
試験年月日 2023年 7月 21日

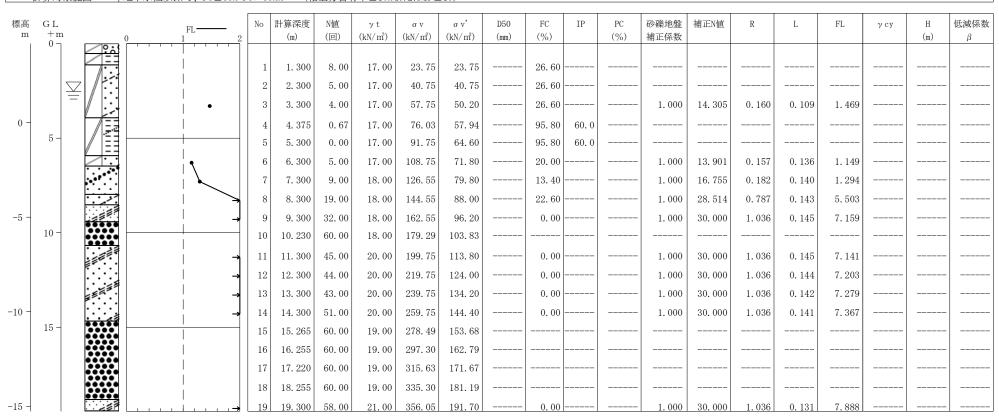

試 験 者 石原 聖子

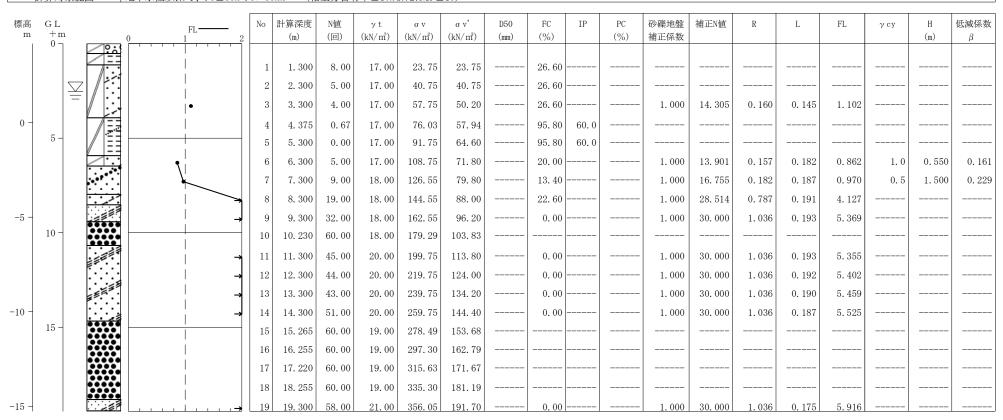
斗番号(深さ)	7-P7 (7.15	$5\sim7.40$ m)				
容 器 No.	S38	S39				
$m_{\scriptscriptstyle m a}$ g	166. 68	179. 00				
т ь g	145. 51	155. 65				
m_{\circ} g	47. 97	48. 04				
w %	21. 7	21. 7				
平 均 値 w %	21.	7				
容器 No.	S2	9				
(試料+容器) 質量 g	256. 3	2				
容器質量 g	48. 1	4				
試料の質量mg	208. 1	8				
試料の炉乾燥質量 m。g	171. 0	6				
ふるい	$425~\mu$ m	75 μ m	425μ m	75μ m	$425~\mu$ m	75 μ m
容 器 No.						
(炉乾燥試料+容器)質量 g	110.08	39. 40				
容器質量 g						
炉乾燥試料質量 g	110.08	39. 40				
組ふるいに残留した 炉 乾 燥 質 量 m_{0s} g	149. 4	8				
立 分 含 有 率 F。%	12.	6				
トの最大粒径 mm	1	9				
	容器 No. ma g w % 容器 No. 公本 Ma 水の質量ma g 試料の炉乾燥質量ma g 本るい No. 容器 No. 存業費量 g ないに残留した ma な分含有率 Fc な分含有率 Fc	容器 No. S38 ma g 166.68 mb g 145.51 mc g 47.97 w % 21.7 平均値 w % 21.7 平均値 w % 21. 容器 No. S2 (試料+容器)質量 g 256.3 容器質量 g 48.1 試料の炉乾燥質量 m g 208.1 試料の炉乾燥質量 m g 171.0 ふるい 425 μ m 容器 質量 g 110.08 容器質量 g 110.08 容器質量 g 110.08 容器質量 g 110.08	容器 No. S38 S39 m。 g 166.68 179.00 m。 g 145.51 155.65 m。 g 47.97 48.04 w % 21.7 21.7 平均値 w % 21.7 容器 No. S29 (試料+容器)質量 g 256.32 容器質量 g 48.14 試料の質量mg 208.18 試料の炉乾燥質量m。g 171.06 ふるい 425 μm 75 μm 容器 質量 g 110.08 39.40 容器質量 g 110.08 39.40 和ふるいに残留した 炉 乾燥質量 m。g 149.48 立分含有率 F。% 12.6	容 器 No. S38 S39 m。 g 166.68 179.00 m。 g 145.51 155.65 m。 g 47.97 48.04 w % 21.7 21.7 平 均 値 w % 21.7 容 器 No. S29 (試料+容器)質量 g 256.32 容 器 質 量 g 48.14 試 料 の 質 量 m g 208.18 試料の炉乾燥質量 m。g 171.06 ふ る い 425 μ m 75 μ m 425 μ m 容 器 No. (炉乾燥試料+容器)質量 g 110.08 39.40 容 器 質 量 g 110.08 39.40 容 器 質 量 g 110.08 39.40 粒 分 含 有 率 F。% 12.6	容 器 No. S38 S39 ma g 166.68 179.00 mb g 145.51 155.65 mc g 47.97 48.04 w % 21.7 21.7 平 均 値 w % 21.7 容 器 No. S29 (試料+容器)質量 g 256.32 容 器 質 量 g 48.14 試 料 の 質 量 m g 208.18 試料の炉乾燥質量 m g 171.06 ふ る い 425 μ m 75 μ m 425 μ m 75 μ m 容 器 質 量 g 110.08 39.40 容 器 質 量 g	容器 No. S38 S39 m. g 166.68 179.00 m. g 145.51 155.65 m. g 47.97 48.04 w % 21.7 21.7 平 均 値 w % 21.7 容器 No. S29 (試料+容器)質量 g 256.32 容器質量 g 48.14 試料の質量 m g 208.18 試料の炉乾燥質量 m. g 171.06 ふ る い 425 μ m 75 μ m 75 μ m 425 μ m 75 μ m

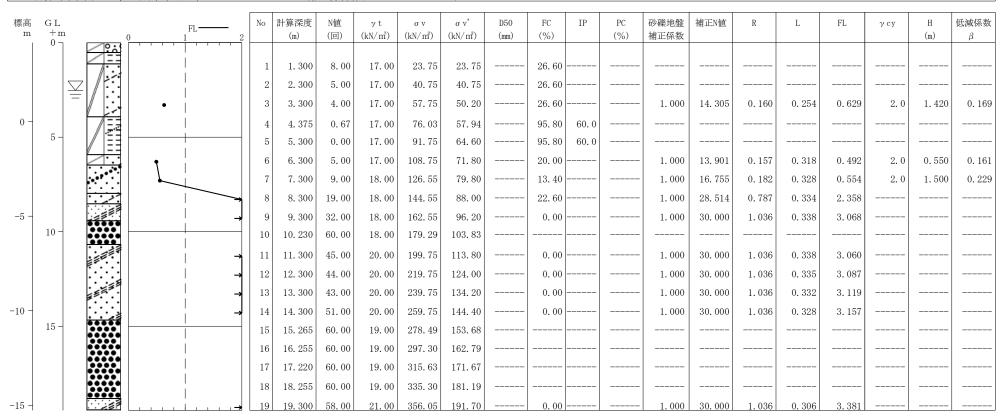

$$m_{\rm s} = \frac{m}{1 + w/100}$$

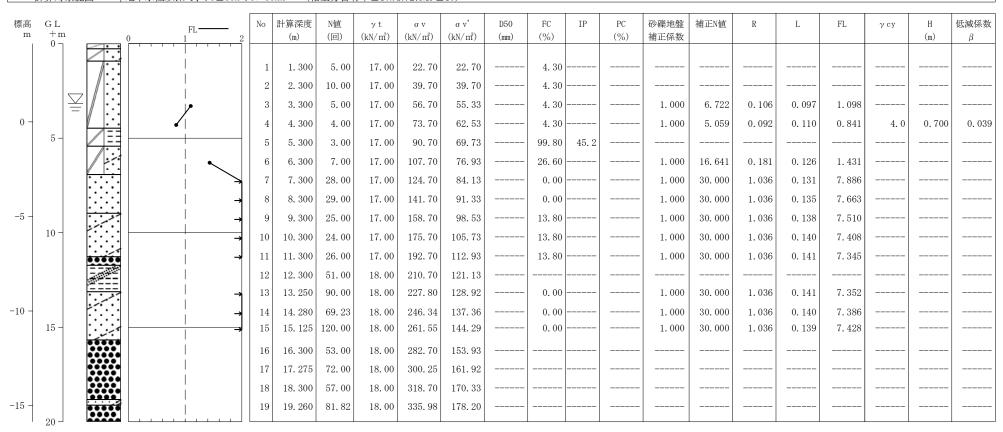
$$F_{c} = \frac{m_{s} - m_{0s}}{m_{s}} \times 100$$

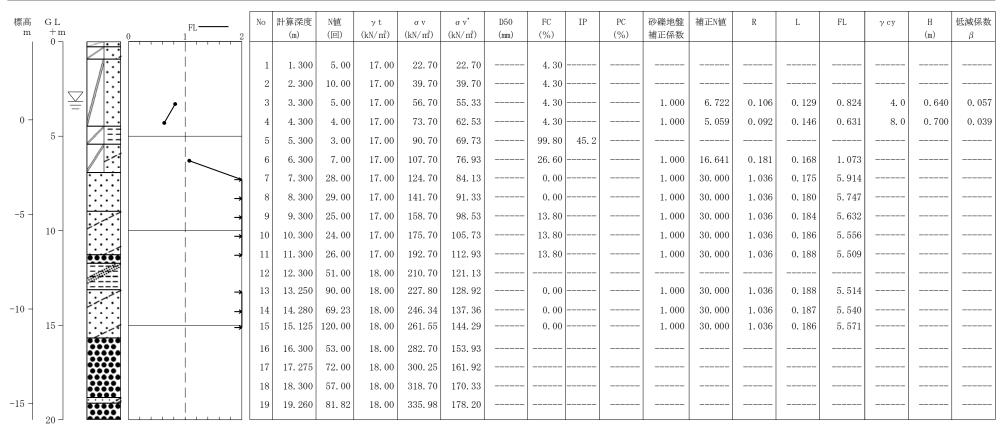

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分38.7000秒 東経:136度51分42.8900秒		
ボーリング名	No. 1		
孔口標高	H=+4. 25 (m)		
地下水位	GL-3. 12 (m)		
液状化指数PL(加速度)	$0.000(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.000(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

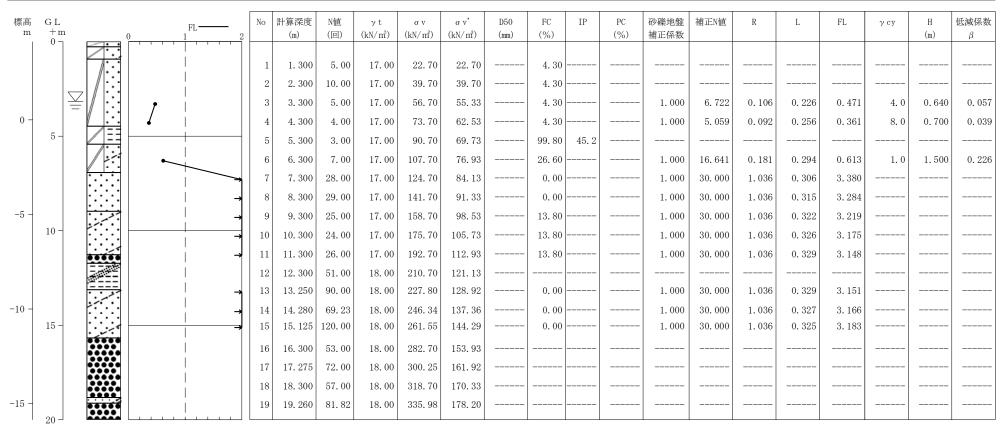

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分38.7000秒 東経:136度51分42.8900秒		
ボーリング名	No. 1		
孔口標高	H=+4. 25 (m)		
地下水位	GL-3. 12 (m)		
液状化指数PL(加速度)	$0.491(2.000 \text{m/s}^2)$	最大水平変位Dcy	0.006 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

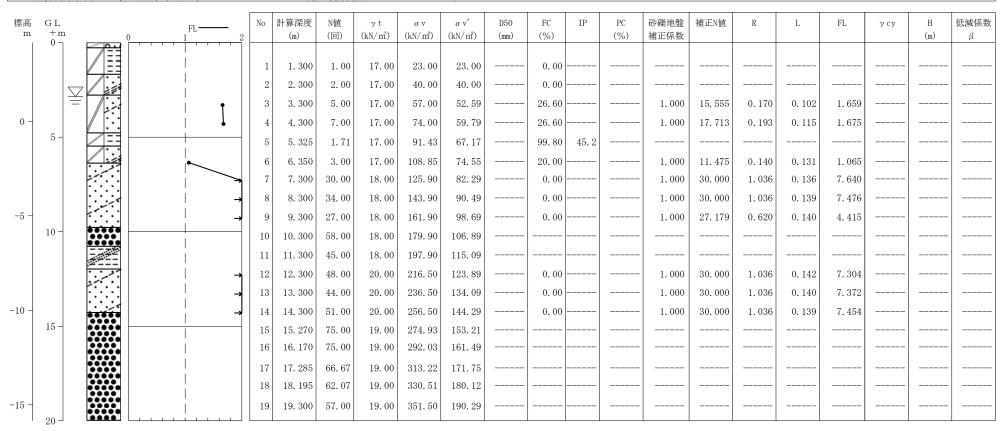

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分38.7000秒 東経:136度51分42.8900秒		
ボーリング名	No. 1		
孔口標高	H=+4. 25 (m)		
地下水位	GL-3. 12 (m)		
液状化指数PL(加速度)	$7.245(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.043(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		·

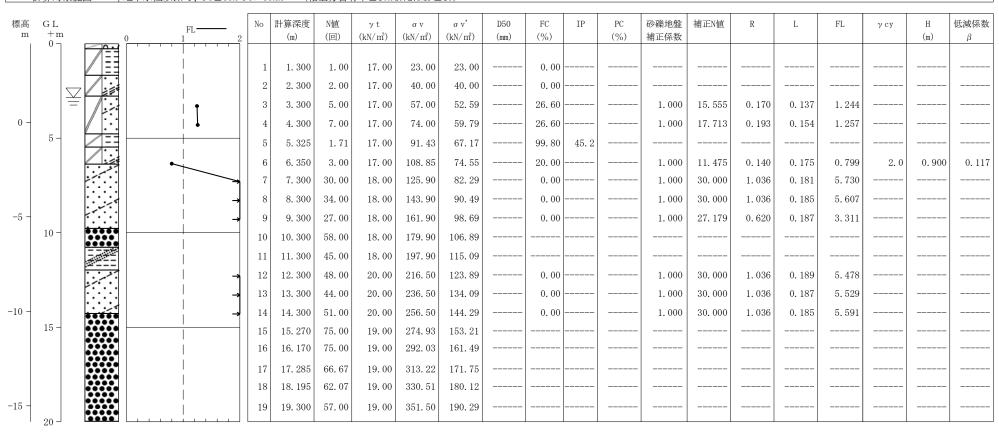

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分38.0000秒 東経:136度51分43.7800秒		
ボーリング名	No. 2		
孔口標高	H=+4. 18 (m)		
地下水位	GL-2. 53 (m)		
液状化指数PL(加速度)	$0.000(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.000 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

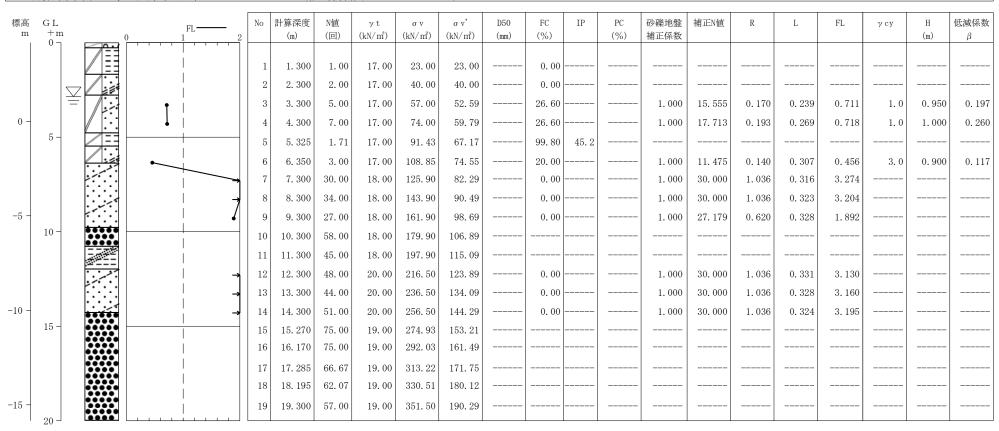

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分38.0000秒 東経:136度51分43.7800秒		
ボーリング名	No. 2		
孔口標高	H=+4. 18 (m)		
地下水位	GL-2. 53 (m)		
液状化指数PL(加速度)	$1.138(2.000 \text{m/s}^2)$	最大水平変位Dcy	0.013(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		·

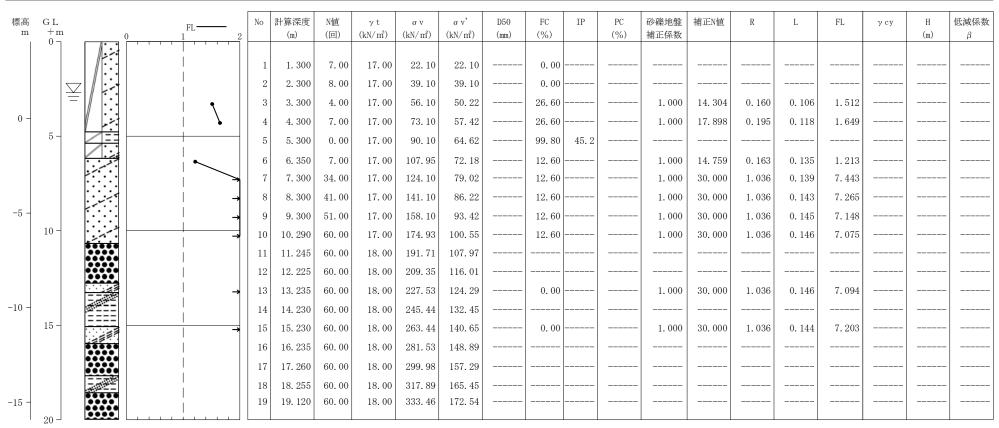

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分38.0000秒 東経:136度51分43.7800秒		
ボーリング名	No. 2		
孔口標高	H=+4. 18 (m)		
地下水位	GL-2. 53 (m)		
液状化指数PL(加速度)	$9.162(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.069(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

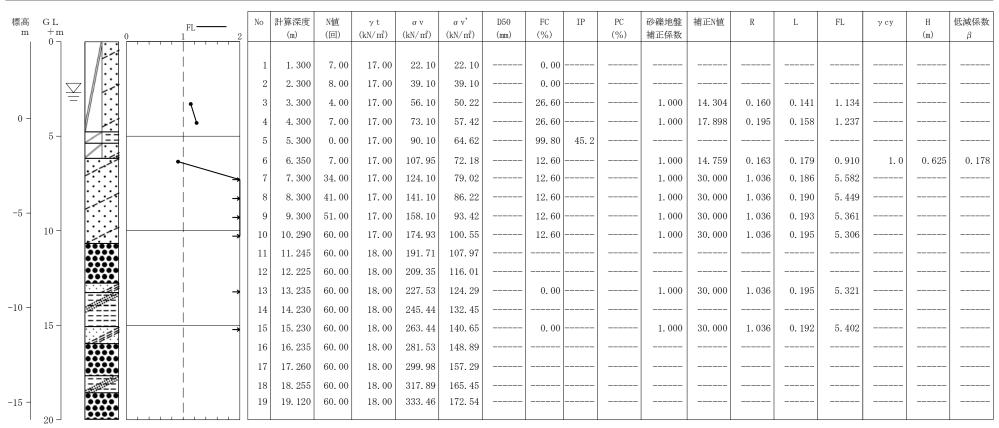

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分39.7200秒 東経:136度51分44.3100秒		
ボーリング名	No. 3		
孔口標高	H=+4.14(m)		
地下水位	GL-3. 16 (m)		
液状化指数PL(加速度)	$1.245(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.028 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

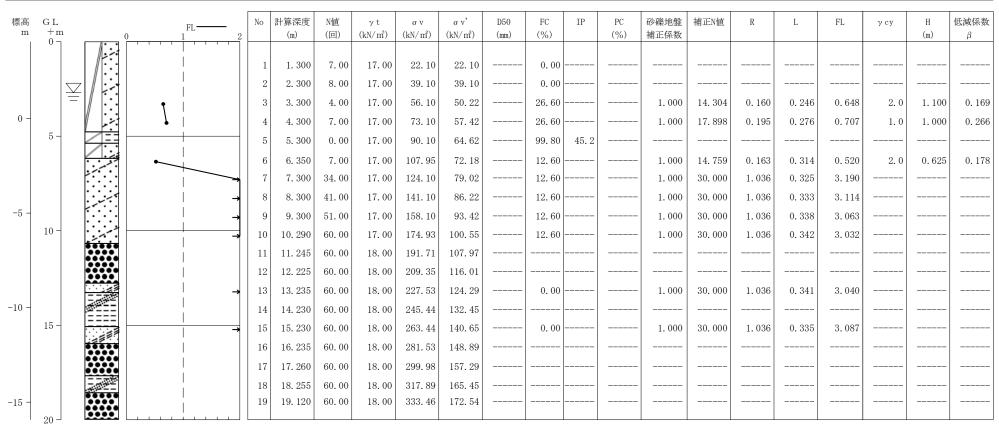

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分39.7200秒 東経:136度51分44.3100秒		
ボーリング名	No. 3		
孔口標高	H=+4.14(m)		
地下水位	GL-3.16(m)		
液状化指数PL(加速度)	$3.735(2.000 \text{m/s}^2)$	最大水平変位Dcy	0.082(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

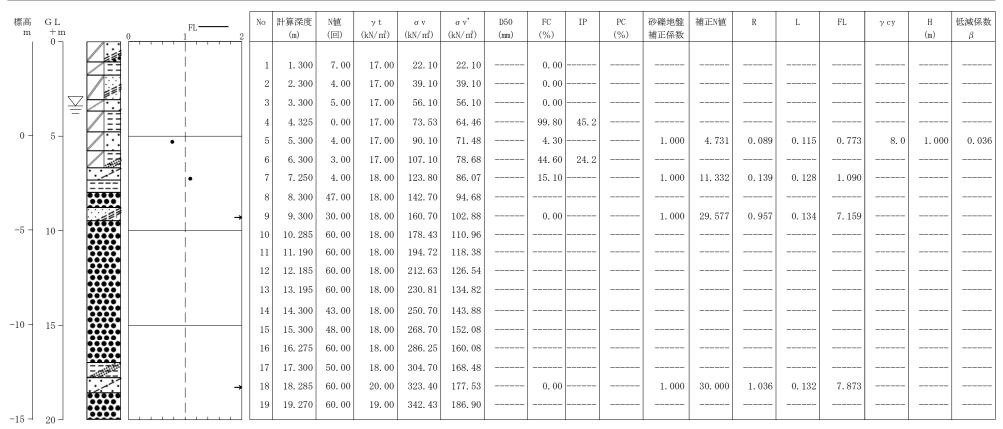

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分39.7200秒 東経:136度51分44.3100秒		
ボーリング名	No. 3		
孔口標高	H=+4.14(m)		
地下水位	GL-3.16(m)		
液状化指数PL(加速度)	$10.187(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.097(m)
低 減 係 数	0.015	マグニチュード	7.500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

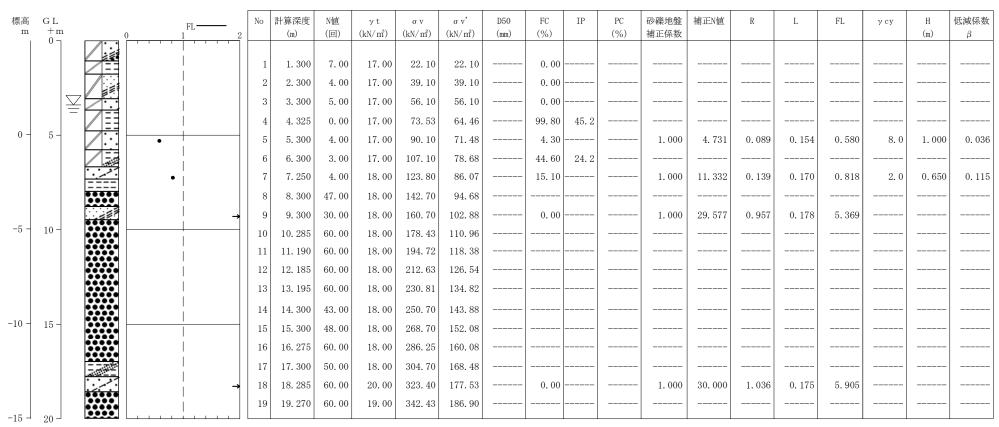

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分39.2100秒 東経:136度51分45.3700秒		
ボーリング名	No. 4		
孔口標高	H=+4. 16 (m)		
地下水位	GL-2. 85 (m)		
液状化指数PL(加速度)	$0.000(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.000(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

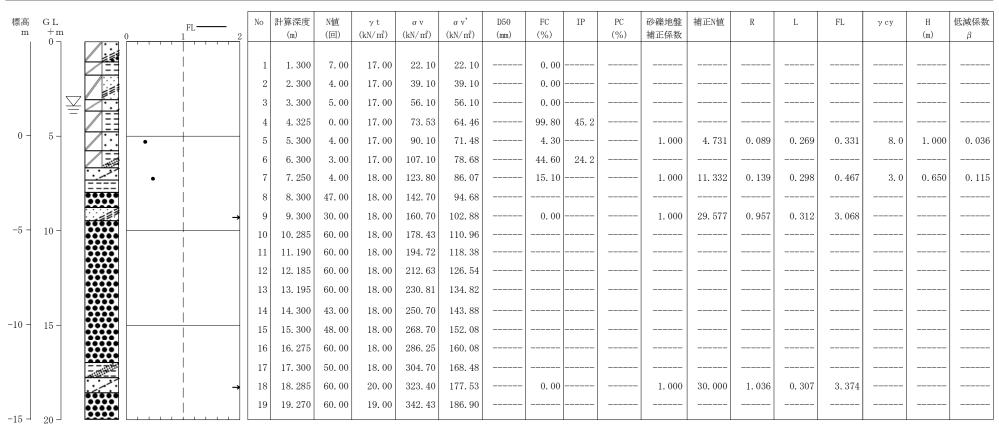

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分39.2100秒 東経:136度51分45.3700秒		
ボーリング名	No. 4		
孔口標高	H=+4.16(m)		
地下水位	GL-2. 85 (m)		
液状化指数PL(加速度)	$1.356(2.000\text{m/s}^2)$	最大水平変位Dcy	0.018(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

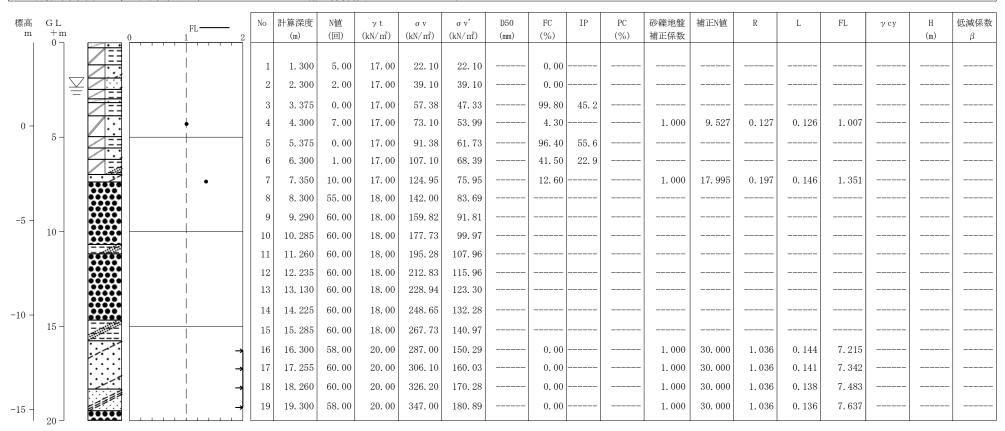

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分39.2100秒 東経:136度51分45.3700秒		
ボーリング名	No. 4		
孔口標高	H=+4. 16 (m)		
地下水位	GL-2. 85 (m)		
液状化指数PL(加速度)	$7.654(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.047(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

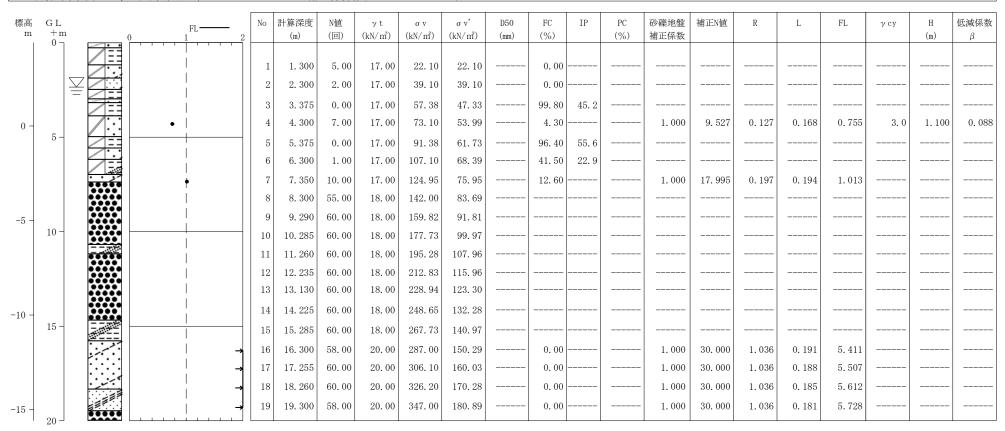

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分40.9800秒 東経:136度51分45.1100秒		
ボーリング名	No. 5		
孔口標高	H=+4.07(m)		
地下水位	GL-2.70 (m)		
液状化指数PL(加速度)	$0.000(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.000 (m)
低 減 係 数	0.015	マグニチュード	7.500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

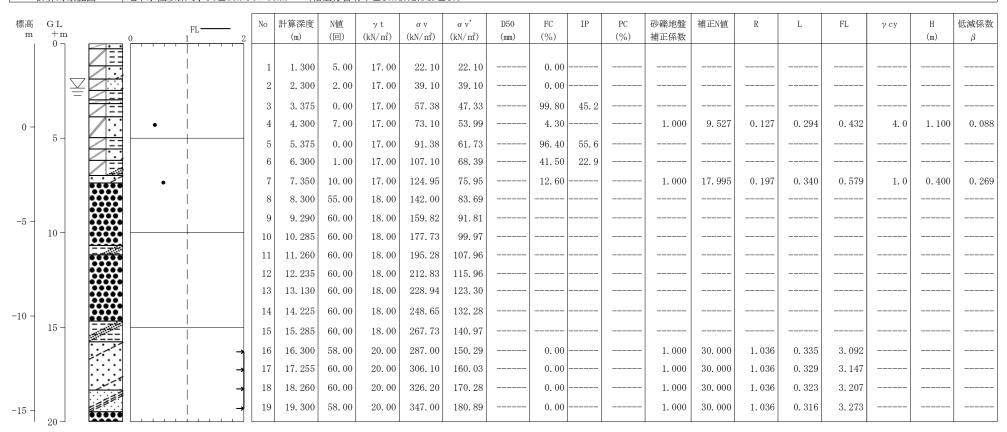

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分40.9800秒 東経:136度51分45.1100秒		
ボーリング名	No. 5		
孔口標高	H=+4.07(m)		
地下水位	GL-2.70(m)		
液状化指数PL(加速度)	$0.615(2.000 \text{m/s}^2)$	最大水平変位Dcy	0.006 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

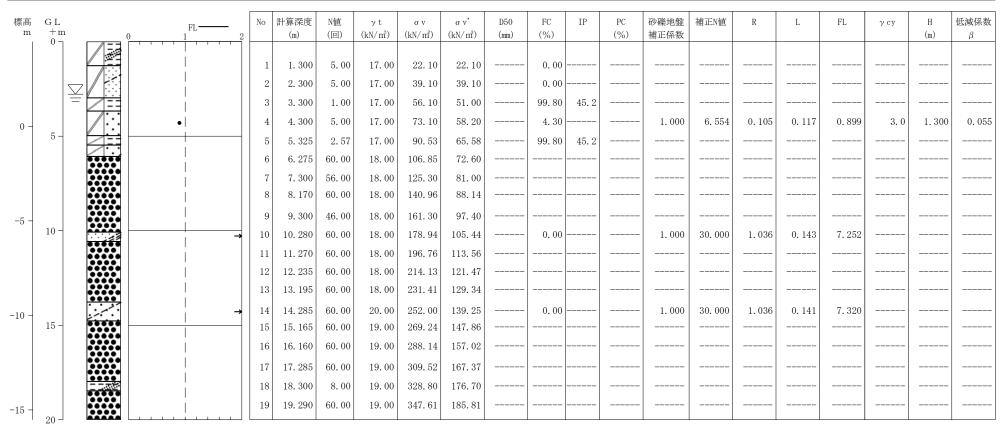

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分40.9800秒 東経:136度51分45.1100秒		
ボーリング名	No. 5		
孔口標高	H=+4.07(m)		
地下水位	GL-2.70(m)		
液状化指数PL(加速度)	$7.928(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.045(m)
低 減 係 数	0.015	マグニチュード	7.500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

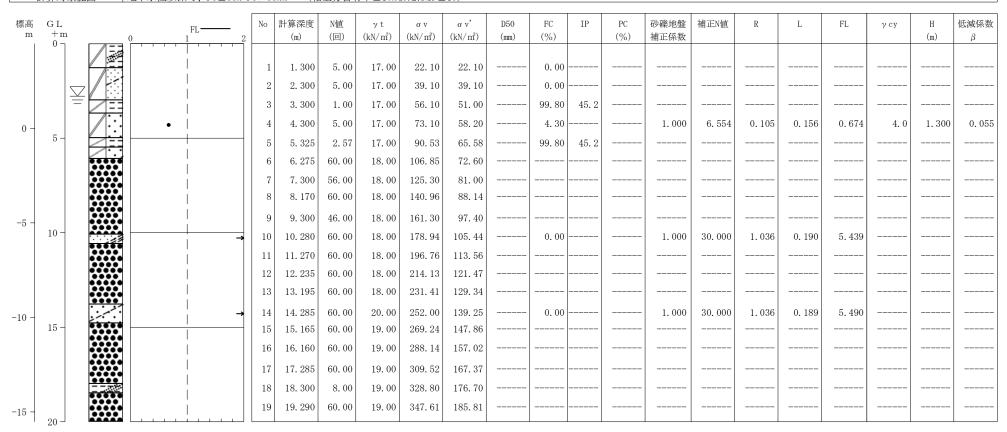

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分40.4200秒 東経:136度51分46.5900秒		
ボーリング名	No. 6		
孔口標高	H=+4.96 (m)		
地下水位	GL-3.40(m)		
液状化指数PL(加速度)	$1.645(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.080 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

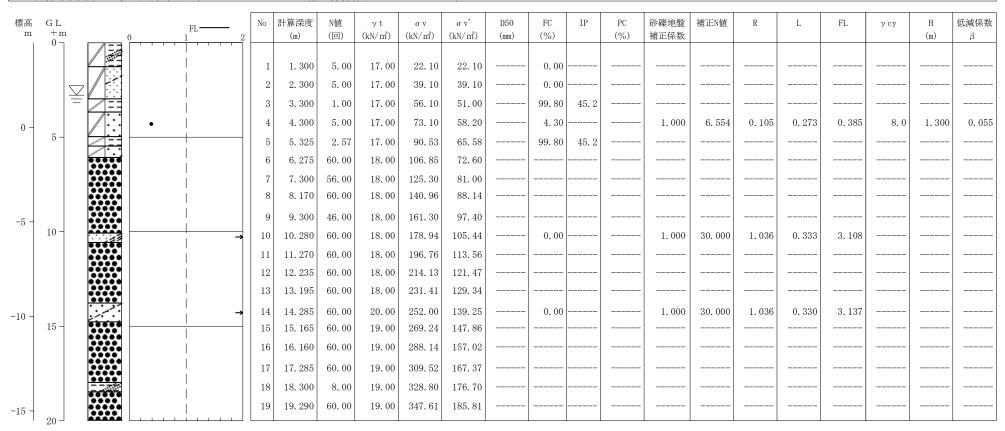

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分40.4200秒 東経:136度51分46.5900秒		
ボーリング名	No. 6		
孔口標高	H=+4.96 (m)		
地下水位	GL-3. 40 (m)		
液状化指数PL(加速度)	$4.211(2.000\text{m/s}^2)$	最大水平変位Dcy	0.093(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

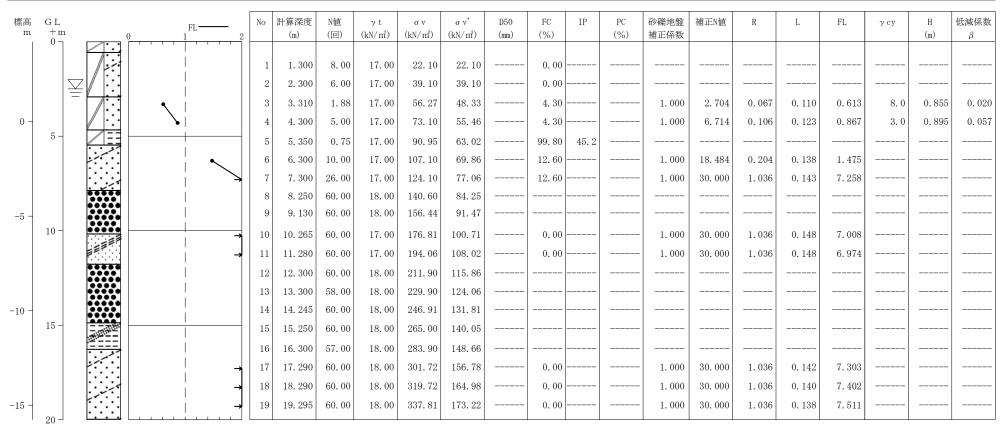

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分40.4200秒 東経:136度51分46.5900秒		
ボーリング名	No. 6		
孔口標高	H=+4.96 (m)		
地下水位	GL-3. 40 (m)		
液状化指数PL(加速度)	$8.249(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.100(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

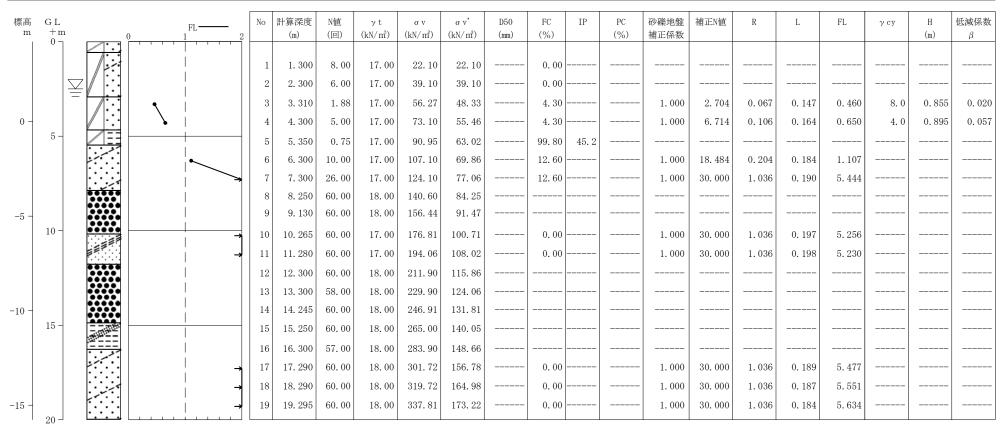

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分41.2400秒 東経:136度51分46.6500秒		
ボーリング名	No. 7		
孔口標高	H=+4. 41 (m)		
地下水位	GL-2. 35 (m)		
液状化指数PL(加速度)	$0.000(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.000(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

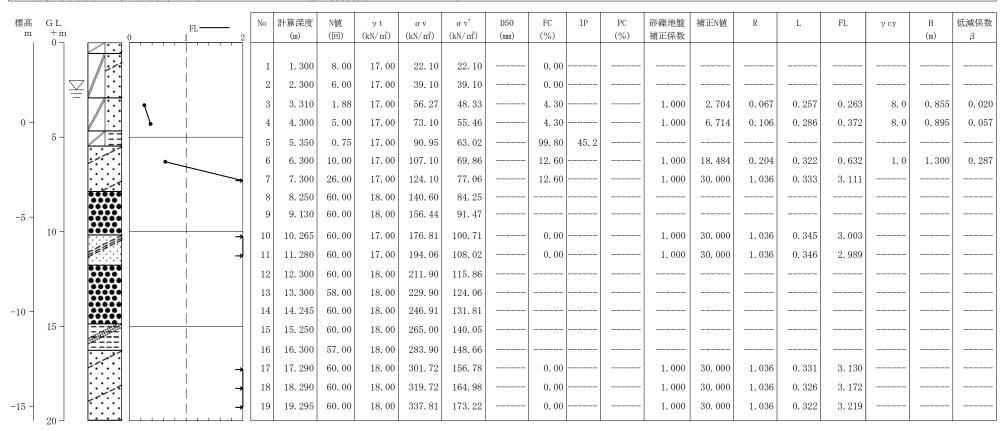

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分41.2400秒 東経:136度51分46.6500秒		
ボーリング名	No. 7		
孔口標高	H=+4. 41 (m)		
地下水位	GL-2. 35 (m)		
液状化指数PL(加速度)	$1.920(2.000 \text{m/s}^2)$	最大水平変位Dcy	0.033(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		


適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分41.2400秒 東経:136度51分46.6500秒		
ボーリング名	No. 7		
孔口標高	H=+4.41(m)		
地下水位	GL-2. 35 (m)		
液状化指数PL(加速度)	$7.124(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.048(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		


適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分41.4500秒 東経:136度51分47.7000秒		
ボーリング名	No. 8		
孔口標高	H=+4.48(m)		
地下水位	GL-2.78(m)		
液状化指数PL(加速度)	$0.803(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.039(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		


適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分41.4500秒 東経:136度51分47.7000秒		
ボーリング名	No. 8		
孔口標高	H=+4.48 (m)		
地下水位	GL-2. 78 (m)		
液状化指数PL(加速度)	$2.589(2.000\text{m/s}^2)$	最大水平変位Dcy	0.052 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		·


適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分41.4500秒 東経:136度51分47.7000秒		
ボーリング名	No. 8		
孔口標高	H=+4. 48 (m)		
地下水位	GL-2. 78 (m)		
液状化指数PL(加速度)	$4.886(3.500 \text{m/s}^2)$	最大水平変位Dcy	0.104(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		


適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分42.7500秒 東経:136度51分47.0500秒		
ボーリング名	No. 9		
孔口標高	H=+4. 23 (m)		
地下水位	GL-2.50 (m)		
液状化指数PL(加速度)	$3.971(1.500 \text{m/s}^2)$	最大水平変位Dcy	0.095(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≦35% FC>35%かつ (粘土分含有率≦10%またはIP≦15)		

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分42.7500秒 東経:136度51分47.0500秒		
ボーリング名	No. 9		
孔口標高	H=+4.23(m)		
地下水位	GL-2.50(m)		
液状化指数PL(加速度)	$6.857(2.000\text{m/s}^2)$	最大水平変位Dcy	0.104(m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

適用式	建築基礎構造設計指針式 (2019)		
調査件名	知多市新庁舎等設計委託に伴う地盤調査		
調査住所	愛知県知多市緑町25番地1他		
調査位置	北緯:34度59分42.7500秒 東経:136度51分47.0500秒		
ボーリング名	No. 9		
孔口標高	H=+4. 23 (m)		
地下水位	GL-2. 50 (m)		
液状化指数PL(加速度)	$13.024(3.500 \text{m/s}^2)$	最大水平変位Dcy	0. 153 (m)
低 減 係 数	0.015	マグニチュード	7. 500
計算対象範囲	地下水位以深で、FC≤35% FC>35%かつ (粘土分含有率≤10%またはIP≤15)		

